Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
HME is an autosomal dominant hereditary disorder. This means that a patient with HME has a 50% chance of transmitting this disorder to his or her children. Most individuals with HME have a parent who also has the condition, however, approximately 10% -20% of individuals with HME have the condition as a result of a spontaneous mutation and are thus the first person in their family to be affected.
HME has thus far been linked with mutations in three genes.
- EXT1 which maps to chromosome 8q24.1
- EXT2 which maps to 11p13
- EXT3 which maps to the short arm of Chromosome 19 (though its exact location has yet to be precisely determined)
Mutations in these genes typically lead to the synthesis of a truncated EXT protein which does not function normally. It is known that EXT proteins are important enzymes in the synthesis of heparan sulfate; however the exact mechanism by which altered synthesis of heparan sulfate that could lead to the abnormal bone growth associated with HME is unclear. It is thought that normal chondrocyte proliferation and differentiation may be affected, leading to abnormal bone growth. Since the HME genes are involved in the synthesis of a glycan (heparan sulfate), HME may be considered a congenital disorder of glycosylation according to the new CDG nomenclature suggested in 2009.
For individuals with HME who are considering starting a family, preimplantation genetic testing and prenatal diagnosis are available to determine if their unborn child has inherited the disease. HME has a 96% penetrance, which means that if the affected gene is indeed transmitted to a child, the child will have a 96% of actually manifesting the disease, and 4% chance of having the disease but never manifesting it. It should be noted that the 96% penetrance figure comes from one study. Other studies have observed both incomplete and variable penetrance but without calculating the % penetrance, e.g. In both the aforementioned studies the symptomless individuals carrying the faulty gene were predominantly female, leading to speculation that incomplete penetrance is more likely to be exhibited in females. Indeed, other work has shown that boys/men tend to have worse disease than females, as well as that the number of exostoses in affected members of the same family can vary greatly. It is also possible for females to be severely affected.
Symptoms are more likely to be severe if the mutation is on the "ext1" gene rather than "ext2" or "ext3"; "ext1" is also the most commonly affected gene in patients of this disorder.
Some parents of children with MHE have observed autism-like social problems in their children. To explore those observations more deeply, a 2012 study by the Sanford-Burnham Medical Research Institute used a mouse model of MHE to observe cognitive function. The findings indicated that the mutant mice endorsed three autistic characteristics: social impairment, impairments in ultrasonic vocalization, and repetitive behavior.
The specific cause of camptodactyly remains unknown, but there are a few deficiencies that lead to the condition. A deficient lumbrical muscle controlling the flexion of the fingers, and abnormalities of the flexor and extensor tendons.
A number of congenital syndromes may also cause camptodactyly:
- Jacobsen syndrome
- Beals Syndrome
- Blau syndrome
- Freeman-Sheldon syndrome
- Cerebrohepatorenal syndrome
- Weaver syndrome
- Christian syndrome 1
- Gordon Syndrome
- Jacobs arthropathy-camptodactyly syndrome
- Lenz microphthalmia syndrome
- Marshall-Smith-Weaver syndrome
- Oculo-dento-digital syndrome
- Tel Hashomer camptodactyly syndrome
- Toriello-Carey syndrome
- Stuve-Wiedemann syndrome
- Loeys-Dietz syndrome
- Fryns syndrome
- Marfan's syndrome
- Carnio-carpo-tarsal dysthropy
The pattern of inheritance is determined by the phenotypic expression of a gene—which is called "expressivity". Camptodactyly can be passed on through generations in various levels of phenotypic expression, which include both or only one hand. This means that the genetic expressivity is incomplete. It can be inherited from either parent.
In most of its cases, camptodactyly occurs sporadically, but it has been found in several studies that it is inherited as an autosomal dominant condition.
Café au lait spots can arise from diverse and unrelated causes:
- Having six or more café au lait spots greater than 5 mm in diameter before puberty, or greater than 15 mm in diameter after puberty, is a diagnostic feature of neurofibromatosis type I, but other features are required to diagnose NF-1.
- Familial multiple café au lait spots have been observed without NF-1 diagnosis.
- They can be caused by vitiligo in the rare McCune–Albright syndrome.
- Legius syndrome
- Tuberous sclerosis
- Fanconi anemia
- Idiopathic
- Ataxia-telangiectasia
- Basal cell nevus syndrome
- Benign congenital skin lesion
- Bloom syndrome
- Chédiak–Higashi syndrome
- Congenital naevus
- Gaucher disease
- Hunter syndrome
- Jaffe–Campanacci syndrome
- Maffucci syndrome
- Multiple mucosal neuroma syndrome
- Noonan syndrome
- Pulmonary Stenosis
- Silver–Russell syndrome
- Watson syndrome
- Wiskott–Aldrich syndrome
Omphalocele has been described in two patients with Apert syndrome by Herman T.E. et al. (USA, 2010) and by Ercoli G. et al. (Argentina, 2014). An omphalocele is a birth defect in which an intestine or other abdominal organs are outside of the body of an infant because of a hole in the bellybutton area. However, the association between omphalocele and Apert syndrome is not confirmed yet, so additional studies are necessary.
It is likely that this syndrome is inherited in an autosomal dominant fashion, however there may be a recessive form with hypotonia and developmental delay.
Males are twice as likely as females to have this characteristic, and it tends to run in families. In its non-symptomatic form, it is more common among Asians and Native Americans than among other populations, and in some families there is a tendency to inherit the condition unilaterally, that is, on one hand only.
The presence of a single transverse palmar crease can be, but is not always, a symptom associated with abnormal medical conditions, such as fetal alcohol syndrome, or with genetic chromosomal abnormalities, including Down Syndrome (chromosome 21), cri du chat syndrome (chromosome 5), Klinefelter syndrome, Wolf-Hirschhorn Syndrome, Noonan syndrome (chromosome 12), Patau syndrome (chromosome 13), IDIC 15/Dup15q (chromosome 15), Edward's syndrome (chromosome 18), and Aarskog-Scott syndrome (X-linked recessive), or autosomal recessive disorder, such as Leaukocyte adhesion deficiency-2 (LAD2). A unilateral single palmar crease was also reported in a case of chromosome 9 mutation causing Nevoid basal cell carcinoma syndrome and Robinow syndrome. It is also sometimes found on the hand of the affected side of patients with Poland Syndrome, and craniosynostosis.
While not always pathological, it can present as a birth defect in multiple syndromes including:
- Catel–Manzke syndrome
- Bloom syndrome
- Coffin–Lowry syndrome
- congenital rubella
- Cri du chat syndrome
- DiGeorge's syndrome
- Ehlers-Danlos syndrome
- fetal alcohol syndrome
- Hallermann-Streiff syndrome
- Hemifacial microsomia (as part of Goldenhar syndrome)
- Juvenile idiopathic arthritis
- Marfan syndrome
- Noonan syndrome
- Pierre Robin syndrome
- Prader–Willi syndrome
- Progeria
- Russell-Silver syndrome
- Seckel syndrome
- Smith-Lemli-Opitz syndrome
- Treacher Collins syndrome
- Trisomy 13 (Patau syndrome)
- Trisomy 18 (Edwards syndrome)
- Wolf–Hirschhorn syndrome
- X0 syndrome (Turner syndrome)
Roberts syndrome is an extremely rare condition that only affects about 150 reported individuals. Although there have been only about 150 reported cases, the affected group is quite diverse and spread worldwide. Parental consanguinity (parents are closely related) is common with this genetic disorder. The frequency of Roberts syndrome carriers is unknown.
It can be detected by the naked eye as well as dental or skull X-Ray testing.
Schimmelpenning syndrome appears to be sporadic rather than inherited, in almost all cases. It is thought to result from genetic mosaicism, possibly an autosomal dominant mutation arising after conception and present only in a subpopulation of cells. The earlier in embryological development such a mutation occurs, the more extensive the nevi are likely to be and the greater the likelihood of other organ system involvement.
The original report was of a family in Cardiff, United Kingdom. There are subsequent reports of patients from the USA, France, Australia, UAE, India and from Cuba.
Surgery is needed to prevent the closing of the coronal sutures from damaging brain development. In particular, surgeries for the LeFort III or monobloc midface distraction osteogenesis which detaches the midface or the entire upper face, respectively, from the rest of the skull, are performed in order to reposition them in the correct plane. These surgeries are performed by both plastic and oral and maxillofacial (OMS) surgeons, often in collaboration.
All clinical sub-types of hypophosphatasia have been traced to genetic mutations in the gene encoding TNSALP, which is localized on chromosome 1p36.1-34 in humans (ALPL; OMIM#171760). Approximately 204 distinct mutations have been described in the TNSALP gene. An up-to-date list of mutations is available online at The Tissue Nonspecific Alkaline Phosphatase Gene Mutations Database. About 80% of the mutations are missense mutations. The number and diversity of mutations results in highly variable phenotypic expression, and there appears to be a correlation between genotype and phenotype in hypophosphatasia”. Mutation analysis is possible and available in 3 laboratories.
Respiratory complications are often cause of death in early infancy.
Acrocephalosyndactylia (or acrocephalosyndactyly) is the common presentation of craniosynostosis and syndactyly.
Perinatal and infantile hypophosphatasia are inherited as autosomal recessive traits with homozygosity or compound heterozygosity for two defective TNSALP alleles. The mode of inheritance for childhood, adult, and odonto forms of hypophosphatasia can be either autosomal dominant or recessive. Autosomal transmission accounts for the fact that the disease affects males and females with equal frequency. Genetic counseling is complicated by the disease’s variable inheritance pattern, and by incomplete penetration of the trait.
Hypophosphatasia is a rare disease that has been reported worldwide and appears to affect individuals of all ethnicities. The prevalence of severe hypophosphatasia is estimated to be 1:100,000 in a population of largely Anglo-Saxon origin. The frequency of mild hypophosphatasia is more challenging to assess because the symptoms may escape notice or be misdiagnosed. The highest incidence of hypophosphatasia has been reported in the Mennonite population in Manitoba, Canada where one in every 25 individuals are considered carriers and one in every 2,500 newborns exhibits severe disease. Hypophosphatasia is considered particularly rare in people of African ancestry in the U.S.
Café au lait spots are usually present at birth, permanent, and may grow in size or increase in number over time.
Cafe au lait spots are themselves benign and do not cause any illness or problems. However, they may be associated with syndromes such as Neurofibromatosis Type 1 and McCune-Albright syndrome.
The size and shape of the spots do not have any meaning or implications with regards to diagnosis of associated syndromes.
The first gene that could cause the syndrome is described recently and is called NF1X (chromosome 19: 19p13.1).
It has several different types:
- type 1 - Apert syndrome
- type 2 - Crouzon syndrome
- type 3 - Saethre-Chotzen syndrome
- type 5 - Pfeiffer syndrome
A related term, "acrocephalopolysyndactyly" (ACPS), refers to the inclusion of polydactyly to the presentation. It also has multiple types:
- type 1 - Noack syndrome; now classified with Pfeiffer syndrome
- type 2 - Carpenter syndrome
- type 3 - Sakati-Nyhan-Tisdale syndrome
- type 4 - Goodman syndrome; now classified with Carpenter syndrome
- type 5 - Pfeiffer syndrome
It has been suggested that the distinction between "acrocephalosyndactyly" versus "acrocephalopolysyndactyly" should be abandoned.
At this time, there are no other phenotypes (observable expressions of a gene) that have been discovered for mutations in the ESCO2 gene.
In humans, a single transverse palmar crease is a single crease that extends across the palm of the hand, formed by the fusion of the two palmar creases (known in palmistry as the "heart line" and the "head line") and is found in people with Down Syndrome. It is also found in 1.5% of the general population in at least one hand.
Because it resembles the usual condition of non-human simians, it is also known as a simian crease or simian line, although these terms have widely fallen out of favor due to their pejorative connotation.
In general, children with a small isolated nevus and a normal physical exam do not need further testing; treatment may include potential surgical removal of the nevus. If syndrome issues are suspected, neurological, ocular, and skeletal exams are important. Laboratory investigations may include serum and urine calcium and phosphate, and possibly liver and renal function tests. The choice of imaging studies depends on the suspected abnormalities and might include skeletal survey, CT scan of the head, MRI, and/or EEG.
Depending on the systems involved, an individual with Schimmelpenning syndrome may need to see an interdisciplinary team of specialists: dermatologist, neurologist, ophthalmologist, orthopedic surgeon, oral surgeon, plastic surgeon, psychologist.
Overall, the estimated prevalence of Stickler syndrome is about 1 in 10,000 people. Stickler syndrome affects 1 in 7,500 to 9,000 newborns.