Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Depending on ethnicity and geography, prevalence has been estimated to be between 1 in 40,000 and 1 in 300,000; based on these estimates the disease may be underdiagnosed. Jewish infants of Iraqi or Iranian origin appear to be most at risk based on a study of a community in Los Angeles in which there was a prevalence of 1 in 4200.
D-Bifunctional protein deficiency (officially called 17β-hydroxysteroid dehydrogenase IV deficiency) is an autosomal recessive peroxisomal fatty acid oxidation disorder. Peroxisomal disorders are usually caused by a combination of peroxisomal assembly defects or by deficiencies of specific peroxisomal enzymes. The peroxisome is an organelle in the cell similar to the lysosome that functions to detoxify the cell. Peroxisomes contain many different enzymes, such as catalase, and their main function is to neutralize free radicals and detoxify drugs, such as alcohol. For this reason peroxisomes are ubiquitous in the liver and kidney. D-BP deficiency is the most severe peroxisomal disorder, often resembling Zellweger syndrome.
Characteristics of the disorder include neonatal hypotonia and seizures, occurring mostly within the first month of life, as well as visual and hearing impairment. Other symptoms include severe craniofacial disfiguration, psychomotor delay, and neuronal migration defects. Most onsets of the disorder begin in the gestational weeks of development and most affected individuals die within the first two years of life.
Some children with LAL-D have had an experimental therapy called hematopoietic stem cell transplantation (HSCT), also known as bone marrow transplant, to try to prevent the disease from getting worse. Data are sparse but there is a known high risk of serious complications including death, graft-versus-host disease.
Alkaptonuria does not appear to affect life expectancy, although the last study on the topic is from 1985. The main impact is on quality of life; many people with alkaptonuria have disabling symptoms such as pain, poor sleep and breathing symptoms. These generally start in the fourth decade. The average age at requiring joint replacement surgery is 50–55 years.
Glycerate kinase is an enzyme that catalyzes the conversion of D-glyceric acid (a.k.a. D-glycerate) to 2-phosphoglycerate. This conversion is an intermediary reaction found in several metabolic pathways, including the degradation (break-down; catabolism) of serine, as well as the breakdown of fructose.
A deficiency in glycerate kinase activity leads to the accumulation of D-glyceric acid (a.k.a. D-glycerate) in bodily fluids and tissues. D-glyceric acid can be measured in a laboratory that performs "analyte testing" for "organic acids" in blood (plasma) and urine.
Symptoms of the disease (in its most severe form) include progressive neurological impairment, mental/motor retardation, hypotonia, seizures, failure to thrive and metabolic acidosis.
D-Glyceric Acidemia (a.k.a. D-Glyceric Aciduria) is an inherited disease, in the category of inborn errors of metabolism. It is caused by a mutation in the gene "GLYCTK", which encodes for the enzyme "glycerate kinase".
In most ethnic groups, the prevalence of alkaptonuria is between 1:100,000 and 1:250,000. In Slovakia and the Dominican Republic the disease is much more common, with prevalence estimated at 1:19,000 people. As for Slovakia, this is not the result of a single mutation but due to a group of 12 mutations in specific "hot spots" of the "HGD" gene. The Slovakian clustering probably arose in a small area in the northwest of the country and spread after the 1950s due to migration.
Lysosomal storage diseases (LSDs; ) are a group of about 50 rare inherited metabolic disorders that result from defects in lysosomal function. Lysosomes are sacs of enzymes within cells that digest large molecules and pass the fragments on to other parts of the cell for recycling. This process requires several critical enzymes. If one of these enzymes is defective, because of a mutation, the large molecules accumulate within the cell, eventually killing it.
Lysosomal storage disorders are caused by lysosomal dysfunction usually as a consequence of deficiency of a single enzyme required for the metabolism of lipids, glycoproteins (sugar-containing proteins), or so-called mucopolysaccharides. Individually, LSDs occur with incidences of less than 1:100,000; however, as a group, the incidence is about 1:5,000 - 1:10,000. Most of these disorders are autosomal recessively inherited such as Niemann–Pick disease, type C, but a few are X-linked recessively inherited, such as Fabry disease and Hunter syndrome (MPS II).
The lysosome is commonly referred to as the cell's recycling center because it processes unwanted material into substances that the cell can use. Lysosomes break down this unwanted matter by enzymes, highly specialized proteins essential for survival. Lysosomal disorders are usually triggered when a particular enzyme exists in too small an amount or is missing altogether. When this happens, substances accumulate in the cell. In other words, when the lysosome does not function normally, excess products destined for breakdown and recycling are stored in the cell.
Like other genetic disorders, individuals inherit lysosomal storage diseases from their parents. Although each disorder results from different gene mutations that translate into a deficiency in enzyme activity, they all share a common biochemical characteristic – all lysosomal disorders originate from an abnormal accumulation of substances inside the lysosome.
LSDs affect mostly children and they often die at a young and unpredictable age, many within a few months or years of birth. Many other children die of this disease following years of suffering from various symptoms of their particular disorder.
The symptoms of LSD vary, depending on the particular disorder and other variables such as the age of onset, and can be mild to severe. They can include developmental delay, movement disorders, seizures, dementia, deafness, and/or blindness. Some people with LSDhave enlarged livers (hepatomegaly) and enlarged spleens (splenomegaly), pulmonary and cardiac problems, and bones that grow abnormally.
Familial disorders
- Cystinosis
- Galactosemia
- Glycogen storage disease (type I)
- Hereditary fructose intolerance
- Lowe syndrome
- Tyrosinemia
- Wilson's disease
Acquired disorders
- Amyloidosis
- Multiple myeloma
- Paroxysmal nocturnal hemoglobinuria
- Toxins, such as HAART, ifosfamide, lead, and cadmium
The most common clinical observations of patients suffering from D-bifunctional protein deficiency include hypotonia, facial and skull dysmorphism, neonatal seizures, and neuronal demyelination. High levels of branched fatty acids, such as pristinic acid, bile acid intermediates, and other D-BP substrates are seen to exist. Reduced pristinic acid β-oxidation is a common indicator of D-BP deficiency. D-BP can be distinguished from Zellweger Syndrome by normal plasmalogen synthesis. Recent studies in D-BP knockout mice show compensatory upregulation of other peroxisomal enzymes in absence of D-BP such as palmitoyl-CoA oxidase, peroxisomal thiolase, and branched chain acyl-CoA oxidase.
Primary hypophosphatemia is the most common cause of nonnutritional rickets. Laboratory findings include low-normal serum calcium, moderately low serum phosphate, elevated serum alkaline phosphatase, and low serum 1,25 dihydroxy-vitamin D levels, hyperphosphaturia, and no evidence of hyperparathyroidism.
Other rarer causes include:
- Certain blood cancers such as lymphoma or leukemia
- Hereditary causes
- Liver failure
- Tumor-induced osteomalacia
Hypophosphatemia is caused by the following three mechanisms:
- Inadequate intake (often unmasked in refeeding after long-term low phosphate intake)
- Increased excretion (e.g. in hyperparathyroidism, hypophosphatemic rickets)
- Shift from extracellular to intracellular space. This can be seen in treatment of diabetic ketoacidosis, refeeding, short-term increases in cellular demand (e.g. hungry bone syndrome) and acute respiratory alkalosis.
Oncogenic osteomalacia or tumor-induced osteomalacia, also known as oncogenic hypophosphatemic osteomalacia or oncogenic osteomalacia, is an uncommon disorder resulting in increased renal phosphate excretion, hypophosphatemia and osteomalacia. It may be caused by a phosphaturic mesenchymal tumor.
Proximal renal tubular acidosis (pRTA) or Type 2 Renal tubular acidosis (RTA) is a type of RTA caused by a failure of the proximal tubular cells to reabsorb filtered bicarbonate from the urine, leading to urinary bicarbonate wasting and subsequent acidemia. The distal intercalated cells function normally, so the acidemia is less severe than dRTA and the urine can acidify to a pH of less than 5.3. pRTA also has several causes, and may occasionally be present as a solitary defect, but is usually associated with a more generalised dysfunction of the proximal tubular cells called Fanconi syndrome where there is also phosphaturia, glycosuria, aminoaciduria, uricosuria and tubular proteinuria.
Patients with type 2 RTA are also typically hypokalemic due to a combination of secondary hyperaldosteronism, and potassium urinary losses - though serum potassium levels may be falsely elevated because of acidosis. Administration of bicarbonate prior to potassium supplementation might lead to worsened hypokalemia, as potassium shifts intracellularly with alkanization.
The principal feature of Fanconi syndrome is bone demineralization (osteomalacia or rickets) due to phosphate and vitamin D wasting.
As of today, no agreed-upon treatment of Dent's disease is known and no therapy has been formally accepted. Most treatment measures are supportive in nature:
- Thiazide diuretics (i.e. hydrochlorothiazide) have been used with success in reducing the calcium output in urine, but they are also known to cause hypokalemia.
- In rats with diabetes insipidus, thiazide diuretics inhibit the NaCl cotransporter in the renal distal convoluted tubule, leading indirectly to less water and solutes being delivered to the distal tubule. The impairment of Na transport in the distal convoluted tubule induces natriuresis and water loss, while increasing the reabsorption of calcium in this segment in a manner unrelated to sodium transport.
- Amiloride also increases distal tubular calcium reabsorption and has been used as a therapy for idiopathic hypercalciuria.
- A combination of 25 mg of chlorthalidone plus 5 mg of amiloride daily led to a substantial reduction in urine calcium in Dent's patients, but urine pH was "significantly higher in patients with Dent’s disease than in those with idiopathic hypercalciuria (P < 0.03), and supersaturation for uric acid was consequently lower (P < 0.03)."
- For patients with osteomalacia, vitamin D or derivatives have been employed, apparently with success.
- Some lab tests on mice with CLC-5-related tubular damage showed a high-citrate diet preserved kidney function and delayed progress of kidney disease.
Dent's disease (or Dent disease) is a rare X-linked recessive inherited condition that affects the proximal renal tubules of the kidney. It is one cause of Fanconi syndrome, and is characterized by tubular proteinuria, excess calcium in the urine, formation of calcium kidney stones, nephrocalcinosis, and chronic kidney failure.
"Dent's disease" is often used to describe an entire group of familial disorders, including X-linked recessive nephrolithiasis with kidney failure, X-linked recessive hypophosphatemic rickets, and both Japanese and idiopathic low-molecular-weight proteinuria. About 60% of patients have mutations in the "CLCN5" gene (Dent 1), which encodes a kidney-specific chloride/proton antiporter, and 15% of patients have mutations in the "OCRL1" gene (Dent 2).
This is a form of dysautonomia but differentiated from familial dysautonomia by a lack of familial dysautonomic symptoms such as loss of sense of pain and smell. While L-threo-DOPS has been described as being "very effective for restoring noradrenergic tone and correcting postural hypotension, response to treatment is variable and the long-term and functional outcome is unknown."
Researchers have put together retrospective data collections in order to better under the progression of this orphan disease. Most studies show a perinatal period marked by inadequacy of the ANS to control blood pressure, blood sugar, and body temperature. The experiences of orthostatic hypotension, exercise intolerance, and "traumatic morbidity related to falls and syncope" have been documented later in lives of people with this condition. To provide a basis for improving the understanding of the epidemiology, genotype/phenotype correlation, outcome of these diseases, their impact on the quality of life of patients, and for evaluating diagnostic and therapeutic strategies, a patient registry was established by the non-commercial International Working Group on Neurotransmitter Related Disorders (iNTD).
Tumor-induced osteomalacia is usually referred to as a paraneoplastic phenomenon, however, the tumors are usually benign and the symptomatology is due to osteomalacia or rickets. A benign mesenchymal or mixed connective tissue tumor (usually phosphaturic mesenchymal tumor and hemangiopericytoma) are the most common associated tumors. Association with mesenchymal malignant tumors, such as osteosarcoma and fibrosarcoma, has also been reported.
Locating the tumor can prove to be difficult and may require whole body MRI. Some of the tumors express somatostatin receptors and may be located by octreotide scanning.
A phosphaturic mesenchymal tumor is an extremely rare benign neoplasm of soft tissue and bone that inappropriately produces fibroblast growth factor 23. This tumor may cause tumor-induced osteomalacia, a paraneoplastic syndrome, by the secretion of FGF23, which has phosphaturic activity (by inhibition of renal tubular reabsorption of phosphate and renal conversion of 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D). The paraneoplastic effects can be debilitating and are only reversed on discovery and surgical resectionof the tumor.
Recent studies have explored the connection between DβH deficiency, Droxidopa treatment, and the effect on orthostatic tolerance and glucose homeostasis. It was found that Droxidopa increased acute and late glucose-stimulated insulin secretion and improved patients' insulin sensitivity. However, the use of Droxidopa was found to only produce "modest changes in glucose homeostasis" overall. This shows that treatment modalities other than Droxidopa should be pursued as possible adjuncts for the hyperinsulinemia seen in DβH deficiency.
The prognosis of nephrocalcinosis is determined by the underlying cause. Most cases of nephrocalcinosis do not progress to end stage renal disease, however if not reated it can lead to renal dysfunction this includes primary hyperoxaluria, hypomagnesemic hypercalciuric nephrocalcinosis and Dent's disease. Once nephrocalcinosis is found, it is unlikely to be reversed, however, partial reversal has been reported in patients who have had successful treatment of hypercalciuria and hyperoxaluria following corrective intestinal surgery.
Elderly people have a higher risk of having a vitamin D deficiency due to a combination of several risk factors, including: decreased sunlight exposure, decreased intake of vitamin D in the diet, and decreased skin thickness which leads to further decreased absorption of vitamin D from sunlight.
Renal tuberculosis
And other causes of hypercalcemia (and thus hypercalciuria)
- Immobilization (leading to hypercalcemia and hypercalciuria)
- Milk-alkali syndrome
- Hypervitaminosis D
- Multiple myeloma
A great deal of research has been conducted to understand whether low levels of vitamin D may cause or be a result of other conditions.
Some evidence suggests hypovitaminosis D may be associated with a worse outcome for some cancers, but evidence is insufficient to recommend that vitamin D be prescribed for people with cancer. Taking vitamin D supplements has no significant effect on cancer risk. Vitamin D, however, appears to decrease the risk of death from cancer but concerns with the quality of the data exist.
Vitamin D deficiency is thought to play a role in the pathogenesis of non-alcoholic fatty liver disease.
Some studies have indicated that vitamin D deficiency may play a role in immunity. Those with vitamin D deficiency may have trouble fighting off certain types of infections. It has also been thought to correlated with cardiovascular disease, type 1 diabetes, type 2 diabetes, and some cancers.
Pregnancy also poses as another high risk factor for vitamin D deficiency. The status levels of vitamin D during the last stages of pregnancy directly impact the new borns first initial months of life. Babies who are exclusively breastfed with minimal exposure to sunlight or supplementation can be at greater risk of vitamin D deficiency,as human milk has minimal vitamin D present. Recommendations for infants of the age 0–12 months are set at 5 ug/day, to assist in preventing rickets in young babies. 80% of dark skinned and or veiled women in Melbourne were found to have serum levels lower than 22.5 nmol/L considering them to be within moderate ranges of vitamin D deficiency.