Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
It is thought to have an estimated incidence of 1 in 75,000 people.
Pearson Syndrome is a very rare mitochondrial disorder that is characterized by health conditions such as sideroblastic anemia, liver disease, and exocrine pancreas deficiency.
Pearson syndrome is a mitochondrial disease characterized by sideroblastic anemia and exocrine pancreas dysfunction. Other clinical features are failure to thrive, pancreatic fibrosis with insulin-dependent diabetes and exocrine pancreatic deficiency, muscle and neurologic impairment, and, frequently, early death. It is usually fatal in infancy. The few patients who survive into adulthood often develop symptoms of Kearns-Sayre syndrome.
It is caused by a deletion in mitochondrial DNA. Pearson syndrome is very rare, less than hundred cases have been reported in medical literature worldwide.
The syndrome was first described by pediatric hematologist and oncologist Howard Pearson in 1979; the deletions causing it were discovered a decade later.
Since the essential pathology is due to the inability to absorb vitamin B from the bowels, the solution is therefore injection of IV vitamin B. Timing is essential, as some of the side effects of vitamin B deficiency are reversible (such as RBC indices, peripheral RBC smear findings such as hypersegmented neutrophils, or even high levels of methylmalonyl CoA), but some side effects are irreversible as they are of a neurological source (such as tabes dorsalis, and peripheral neuropathy). High suspicion should be exercised when a neonate, or a pediatric patient presents with anemia, proteinuria, sufficient vitamin B dietary intake, and no signs of pernicious anemia.
Shwachman–Diamond syndrome (SDS) or Shwachman–Bodian–Diamond syndrome is a rare congenital disorder characterized by exocrine pancreatic insufficiency, bone marrow dysfunction, skeletal abnormalities, and short stature. After cystic fibrosis (CF), it is the second most common cause of exocrine pancreatic insufficiency in children.
This is a rare disease with prevalence about 1 in 200,000 to 1 in 600,000. Studies showed that mutations in "CUBN" or "AMN" clustered particularly in the Scandinavian countries and the Eastern Mediterranean regions. Founder effect, higher clinical awareness to IGS, and
frequent consanguineous marriages all play a role in the higher prevalence of IGS among these populations
Although the pathogenesis of HHS remains unknown, it is strongly suspected that the clinical sequelae of HHS arise from the accelerated telomere shortening present in HHS patients.
Hoyeraal-Hreidarsson syndrome (HHS) is a very rare multisystem X-linked recessive disorder characterized by excessively short telomeres and is considered a severe form of dyskeratosis congenita. Being an X-linked disorder, HHS primarily affects males. Patients with HHS typically present in early childhood with cerebellar hypoplasia, immunodeficiency, progressive bone marrow failure, and intrauterine growth retardation. The primary cause of death in HHS is bone marrow failure, but mortality from cancer and pulmonary fibrosis is also significant.
Congenital dyserythropoietic anemia type IV is an autosomal dominant inherited red blood cell disorder characterized by ineffective erythropoiesis and hemolysis resulting in anemia. Circulating erythroblasts and erythroblasts in the bone marrow show various morphologic abnormalities. Affected individuals with CDAN4 also have increased levels of fetal hemoglobin.
Arakawa's syndrome II is an autosomal dominant metabolic disorder that causes a deficiency of the enzyme tetrahydrofolate-methyltransferase; affected individuals cannot properly metabolize methylcobalamin, a type of Vitamin B.
It is also called Methionine synthase deficiency, Tetrahydrofolate-methyltransferase deficiency syndrome, and N5-methylhomocysteine transferase deficiency.
Vitamin E deficiency is rare and is almost never caused by a poor diet. Instead, there are three specific situations when a vitamin E deficiency is likely to occur:
- Premature, very low birth weight infants - birth weights less than 1500 grams, or 3.5 pounds. A neonatologist, a pediatrician specializing in the care of newborns, typically evaluates the nutritional needs of premature infants.
- Rare disorders of fat metabolism - There is a rare genetic condition termed isolated vitamin E deficiency or 'ataxia with isolated with vitamin E deficiency', caused by mutations in the gene for the tocopherol transfer protein. These individuals have an extremely poor capacity to absorb vitamin E and develop neurological complications that are reversed by high doses of vitamin E.
- Fat malabsorption - Some dietary fat is needed for the absorption of vitamin E from the gastrointestinal tract. Anyone diagnosed with cystic fibrosis, individuals who have had part or all of their stomach removed or who have had a gastric bypass, and individuals with malabsorptive problems such as Crohn's disease, liver disease or exocrine pancreatic insufficiency may not absorb fat (people who cannot absorb fat often pass greasy stools or have chronic diarrhea and bloating). Abetalipoproteinemia is a rare inherited disorder of fat metabolism that results in poor absorption of dietary fat and vitamin E. The vitamin E deficiency associated with this disease causes problems such as poor transmission of nerve impulses, muscle weakness, and degeneration of the retina that can cause blindness.
Congenital dyserythropoietic anemia type IV (CDA IV) has been described with typical morphologic features of CDA II but a negative acidified-serum test.
Some biogerontologists question that such a thing as "accelerated aging" actually exists, at least partly on the grounds that all of the so-called accelerated aging diseases are segmental progerias. Many disease conditions such as diabetes, high blood pressure, etc., are associated with increased mortality. Without reliable biomarkers of aging it is hard to support the claim that a disease condition represents more than accelerated mortality.
Against this position other biogerontologists argue that premature aging phenotypes are identifiable symptoms associated with mechanisms of molecular damage. The fact that these phenotypes are widely recognized justifies classification of the relevant diseases as "accelerated aging". Such conditions, it is argued, are readily distinguishable from genetic diseases associated with increased mortality, but not associated with an aging phenotype, such as cystic fibrosis and sickle cell anemia. It is further argued that segmental aging phenotype is a natural part of aging insofar as genetic variation leads to some people being more disposed than others to aging-associated diseases such as cancer and Alzheimer's disease.
DNA repair defects are seen in nearly all of the diseases described as accelerated aging disease, in which various tissues, organs or systems of the human body age prematurely. Because the accelerated aging diseases display different aspects of aging, but never every aspect, they are often called segmental progerias by biogerontologists.
Arakawa's syndrome II is inherited in an autosomal dominant manner. This means the defective gene responsible for disorder is located on an autosome, and one copy of the defective gene is sufficient to cause the disorder when inherited from a parent who has the disorder.
Some situations that increase the need for folate include the following:
- hemorrhage
- kidney dialysis
- liver disease
- malabsorption, including celiac disease and fructose malabsorption
- pregnancy and lactation (breastfeeding)
- tobacco smoking
- alcohol consumption
Signs of vitamin E deficiency include the following:
- Neuromuscular problems-such as spinocerebellar ataxia and myopathies.
- Neurological problems-may include dysarthria, absence of deep tendon reflexes, loss of the ability to sense vibration and detect where body parts are in three dimensional space, and positive Babinski sign.
- Hemolytic anemia-due to oxidative damage to red blood cells
- Retinopathy
- Impairment of the immune response
There is also some laboratory evidence that vitamin E deficiency can cause male infertility.
Folate is found in leafy green vegetables. Multi-vitamins also tend to include Folate as well as many other B vitamins. B vitamins, such as Folate, are water-soluble and excess is excreted in the urine.
When cooking, use of steaming, a food steamer, or a microwave oven can help keep more folate content in the cooked foods, thus helping to prevent folate deficiency.
Folate deficiency during human pregnancy has been associated with an increased risk of infant neural tube defects. Such deficiency during the first four weeks of gestation can result in structural and developmental problems. NIH guidelines recommend oral B vitamin supplements to decrease these risks near the time of conception and during the first month of pregnancy.
OSLAM syndrome is a rare autosomal dominant hereditary disorder. Its name is an initialism of "osteosarcoma, limb anomalies, and erythroid macrocytosis with megaloblastic marrow syndrome". OSLAM syndrome was recognised and described by Mulvilhill "" as a syndrome that increases susceptibility to tumours and is characterised by an impaired regulation of bone and marrow development.
Individuals with OSLAM syndrome have an elevated risk of bone cancer, limb abnormalities, and enlarged red blood cells.
Megaloblastic anemia (or megaloblastic anaemia) is an anemia (of macrocytic classification) that results from inhibition of DNA synthesis during red blood cell production. When DNA synthesis is impaired, the cell cycle cannot progress from the G2 growth stage to the mitosis (M) stage. This leads to continuing cell growth without division, which presents as macrocytosis.
Megaloblastic anemia has a rather slow onset, especially when compared to that of other anemias.
The defect in red cell DNA synthesis is most often due to hypovitaminosis, specifically a deficiency of vitamin B and/or folic acid. Vitamin B deficiency alone will not cause the syndrome in the presence of sufficient folate, as the mechanism is loss of B dependent folate recycling, followed by folate-deficiency loss of nucleic acid synthesis (specifically thymine), leading to defects in DNA synthesis. Folic acid supplementation in the absence of vitamin B prevents this type of anemia (although other vitamin B-specific pathologies may be present). Loss of micronutrients may also be a cause. Copper deficiency resulting from an excess of zinc from unusually high oral consumption of zinc-containing denture-fixation creams has been found to be a cause.
Megaloblastic anemia not due to hypovitaminosis may be caused by antimetabolites that poison DNA production directly, such as some chemotherapeutic or antimicrobial agents (for example azathioprine or trimethoprim).
The pathological state of megaloblastosis is characterized by many large immature and dysfunctional red blood cells (megaloblasts) in the bone marrow and also by hypersegmented neutrophils (those exhibiting five or more nuclear lobes ("segments"), with up to four lobes being normal). These hypersegmented neutrophils can be detected in the peripheral blood (using a diagnostic smear of a blood sample).
GSE can result in high risk pregnancies and infertility. Some infertile women have GSE and iron deficiency anemia others have zinc deficiency and birth defects may be attributed to folic acid deficiencies.
It has also been found to be a rare cause of amenorrhea.
A person with well-treated PA can live a healthy life. Failure to diagnose and treat in time, however, may result in permanent neurological damage, excessive fatigue, depression, memory loss, and other complications. In severe cases, the neurological complications of pernicious anemia can lead to death - hence the name, "", meaning deadly.
An association has been observed between pernicious anemia and certain types of gastric cancer, but a causal link has not been established.
Certain gastrointestinal disorders can cause anemia. The mechanisms involved are multifactorial and not limited to malabsorption but mainly related to chronic intestinal inflammation, which causes dysregulation of hepcidin that leads to decreased access of iron to the circulation.
- "Helicobacter pylori" infection.
- Gluten-related disorders: untreated celiac disease and non-celiac gluten sensitivity. Anemia can be the only manifestation of celiac disease, in absence of gastrointestinal or any other symptoms.
- Inflammatory bowel disease.
A moderate degree of iron-deficiency anemia affected approximately 610 million people worldwide or 8.8% of the population. It is slightly more common in females (9.9%) than males (7.8%). Mild iron deficiency anemia affects another 375 million.
PA is estimated to affect 0.1% of the general population and 1.9% of those over 60, accounting for 20–50% of B deficiency in adults. A review of literature shows that the prevalence of PA is higher in Northern Europe, especially in Scandinavian countries, and among people of African descent, and that increased awareness of the disease and better diagnostic tools might play a role in apparently higher rates of incidence.