Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Strabismus can be seen in Down syndrome, Loeys-Dietz syndrome, cerebral palsy, and Edwards syndrome. The risk is increased among those with a family history of the condition.
Hypertropia may be either congenital or acquired, and misalignment is due to imbalance in extraocular muscle function. The superior rectus, inferior rectus, superior oblique, and inferior oblique muscles affect the vertical movement of the eyes. These muscles may be either paretic, restrictive (fibrosis) or overactive effect of the muscles. Congenital cases may have developmental abnormality due to abnormal muscle structure, usually muscle atrophy / hypertrophy or rarely, absence of the muscle and incorrect placement.
Specific & common causes include:
- Superior oblique Palsy / Congenital fourth nerve palsy
- Inferior oblique overaction
- Brown's syndrome
- Duane's retraction syndrome
- Double elevator palsy
- Fibrosis of rectus muscle in Graves Disease (most commonly inferior rectus is involved)
- Surgical trauma to the vertical muscles (e.g. during scleral buckling surgery or cataract surgery causing iatrogenic trauma to the vertical muscles).
Sudden onset hypertropia in a middle aged or elderly adult may be due to compression of the trochlear nerve and mass effect from a tumor, requiring urgent brain imaging using MRI to localise any space occupying lesion. It could also be due to infarction of blood vessels supplying the nerve, due to diabetes and atherosclerosis. In other instances it may be due to an abnormality of neuromuscular transmission, i.e., Myasthenia Gravis.
People of all ages who have noticeable strabismus may experience psychosocial difficulties. Attention has also been drawn to potential socioeconomic impact resulting from cases of detectable strabismus. A socioeconomic consideration exists as well in the context of decisions regarding strabismus treatment, including efforts to re-establish binocular vision and the possibility of stereopsis recovery.
One study has shown that strabismic children commonly exhibit behaviors marked by higher degrees of inhibition, anxiety, and emotional distress, often leading to outright emotional disorders. These disorders are often related to a negative perception of the child by peers. This is due not only to an altered aesthetic appearance, but also because of the inherent symbolic nature of the eye and gaze, and the vitally important role they play in an individual's life as social components. For some, these issues improved dramatically following strabismus surgery. Notably, strabismus interferes with normal eye contact, often causing embarrassment, anger, and feelings of awkwardness, thereby affecting social communication in a fundamental way, with a possible negative effect on self esteem.
Children with strabismus, particularly those with exotropia (an outward turn), may be more likely to develop a mental health disorder than normal-sighted children. Researchers have theorized that esotropia (an inward turn) was not found to be linked to a higher propensity for mental illness due to the age range of the participants, as well as the shorter follow-up time period; esotropic children were monitored to a mean age of 15.8 years, compared with 20.3 years for the exotropic group. A subsequent study with participants from the same area monitored congenital esotropia patients for a longer time period; results indicated that esotropic patients "were" also more likely to develop mental illness of some sort upon reaching early adulthood, similar to those with constant exotropia, intermittent exotropia, or convergence insufficiency. The likelihood was 2.6 times that of controls. No apparent association with premature birth was observed, and no evidence was found linking later onset of mental illness to psychosocial stressors frequently encountered by those with strabismus.
Investigations have highlighted the impact that strabismus may typically have on quality of life. Studies in which subjects were shown images of strabismic and non-strabismic persons showed a strong negative bias towards those visibly displaying the condition, clearly demonstrating the potential for future socioeconomic implications with regard to employability, as well as other psychosocial effects related to an individual's overall happiness.
Adult and child observers perceived a right heterotropia as more disturbing than a left heterotropia, and child observers perceived an esotropia as "worse" than an exotropia. Successful surgical correction of strabismus—for adult patients as well as children—has been shown to have a significantly positive effect on psychological well-being.
Very little research exists regarding coping strategies employed by adult strabismics. One study categorized coping methods into three subcategories: avoidance (refraining from participation an activity), distraction (deflecting attention from the condition), and adjustment (approaching an activity differently). The authors of the study suggested that individuals with strabismus may benefit from psychosocial support such as interpersonal skills training.
No studies have evaluated whether psychosocial interventions have had any benefits on individuals undergoing strabismus surgery.
Cyclotropia is a form of strabismus in which, compared to the correct positioning of the eyes, there is a of one eye (or both) about the eye's visual axis. Consequently, the visual fields of the two eyes appear tilted relative to each other. The corresponding "latent" condition – a condition in which torsion occurs only in the absence of appropriate visual stimuli – is called cyclophoria.
Cyclotropia is often associated with other disorders of strabism, can result in double vision, and can cause other symptoms, in particular head tilt.
In some cases, subjective and objective cyclodeviation may result from surgery for oblique muscle disorders; if the visual system cannot compensate for it, cyclotropia and rotational double vision (cyclodiplopia) may result. The role of cyclotropia in vision disorders is not always correctly identified. In several cases of double vision, once the underlying cyclotropia was identified, the condition was solved by surgical cyclotropia correction.
Conversely, artificially causing cyclotropia in cats leads to reduced vision acuity, resulting in a defect similar to strabismic amblyopia.
Refractive errors such as hyperopia and Anisometropia may be associated abnormalities found in patients with vertical strabismus.
The vertical miscoordination between the two eyes may lead to
- Strabismic amblyopia, (due to deprivation / suppression of the deviating eye)
- cosmetic defect (most noticed by parents of a young child and in photographs)
- Face turn, depending on presence of binocular vision in a particular gaze
- diplopia or double vision - more seen in adults (maturity / plasticity of neural pathways) and suppression mechanisms of the brain in sorting out the images from the two eyes.
- cyclotropia, a cyclotorsional deviation of the eyes (rotation around the visual axis), particularly when the root cause is an oblique muscle paresis causing the hypertropia.
If only small amounts of torsion are present, cyclotropia may be without symptoms entirely and may not need correction, as the visual system can compensate small degrees of torsion and still achieve binocular vision ("see also:" cyclodisparity, cyclovergence). The compensation can be a motor response (visually evoked cyclovergence) or can take place during signal processing in the brain. In patients with cyclotropia of vascular origin, the condition often improves spontaneously.
Cyclotropia cannot be corrected with prism spectacles in the way other eye position disorders are corrected. (Nonetheless two Dove prisms can be employed to rotate the visual field in experimental settings.)
For cyclodeviations above 5 degrees, surgery has normally been recommended. Depending on the symptoms, the surgical correction of cyclotropia may involve a correction of an associated vertical deviation (hyper- or hypotropia), or a Harada–Ito procedure or another procedure to rotate the eye inwards, or yet another procedure to rotate it outwards. A cyclodeviation may thus be corrected at the same time with a correction of a vertical deviation (hyper- or hypotropia); cyclodeviations without any vertical deviation can be difficult to manage surgically, as the correction of the cyclodeviation may introduce a vertical deviation.