Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Iatrogenic Cushing's syndrome (caused by treatment with corticosteroids) is the most common form of Cushing's syndrome. Cushing's disease is rare; a Danish study found an incidence of less than one case per million people per year. However, asymptomatic microadenomas (less than 10 mm in size) of the pituitary are found in about one in six individuals.
People with Cushing's syndrome have increased morbidity and mortality as compared to the general population. The most common cause of mortality in Cushing's syndrome is cardiovascular events. People with Cushing's syndrome have nearly 4 times increased cardiovascular mortality as compared to the general population.
The most common cause of Cushing's syndrome is the taking of glucocorticoids prescribed by a health care practitioner to treat other diseases (called iatrogenic Cushing's syndrome). This can be an effect of corticosteroid treatment of a variety of disorders such as asthma and rheumatoid arthritis, or in immunosuppression after an organ transplant. Administration of synthetic ACTH is also possible, but ACTH is less often prescribed due to cost and lesser utility. Although rare, Cushing's syndrome can also be due to the use of medroxyprogesterone acetate. In this form of Cushing's, the adrenal glands atrophy due to lack of stimulation by ACTH, since glucocorticoids downregulate production of ACTH. Cushing's syndrome in childhood usually results from use of glucocorticoid medication.
Endogenous Cushing's syndrome results from some derangement of the body's own system of secreting cortisol. Normally, ACTH is released from the pituitary gland when necessary to stimulate the release of cortisol from the adrenal glands.
- In pituitary Cushing's, a benign pituitary adenoma secretes ACTH. This is also known as Cushing's disease and is responsible for 70% of endogenous Cushing's syndrome.
- In adrenal Cushing's, excess cortisol is produced by adrenal gland tumors, hyperplastic adrenal glands, or adrenal glands with nodular adrenal hyperplasia.
- Tumors outside the normal pituitary-adrenal system can produce ACTH (occasionally with CRH) that affects the adrenal glands. This etiology is called ectopic or paraneoplastic Cushing's disease and is seen in diseases such as small cell lung cancer.
- Finally, rare cases of CRH-secreting tumors (without ACTH secretion) have been reported, which stimulates pituitary ACTH production.
Cases of Cushing's disease are rare, and little epidemiological data is available on the disease. An 18-year study conducted on the population of Vizcaya, Spain reported a 0.004% prevalence of Cushing's disease. The average incidence of newly diagnosed cases was 2.4 cases per million inhabitants per year. The disease is often diagnosed 3–6 years after the onset of illness.
Several studies have shown that Cushing's disease is more prevalent in women than men at a ratio of 3-6:1, respectively. Moreover, most women affected were between the ages of 50 and 60 years.
The prevalence of hypertension, and abnormalities in glucose metabolism are major predictors of mortality and morbidity in untreated cases of the disease. The mortality rate of Cushing's disease was reported to be 10-11%, with the majority of deaths due to vascular disease Women aged 45–70 years have a significantly higher mortality rate than men.
Moreover, the disease shows a progressive increase with time. Reasons for the trend are unknown, but better diagnostic tools, and a higher incidence rate are two possible explanations.
Cushing's disease is a cause of Cushing's syndrome characterised by increased secretion of adrenocorticotropic hormone (ACTH) from the anterior pituitary (secondary hypercortisolism). This is most often as a result of a pituitary adenoma (specifically pituitary basophilism) or due to excess production of hypothalamus CRH (corticotropin releasing hormone) (tertiary hypercortisolism/hypercorticism) that stimulates the synthesis of cortisol by the adrenal glands. Pituitary adenomas are responsible for 80% of endogenous Cushing's syndrome, when excluding Cushing's syndrome from exogenously administered corticosteroids.
This should not be confused with ectopic Cushing syndrome or exogenous steroid use.
Pituitary ACTH hypersecretion (or Cushing disease) is a form of hyperpituitarism characterized by an abnormally high level of ACTH produced by the anterior pituitary. It is one of the causes of Cushing's syndrome. (However, Cushing's syndrome can be caused by many other causes, including exogenous administration.)
PPNAD is a rare cause of high cortisol levels in the blood and often manifests as ACTH-independent Cushing's syndrome. The effects of PPNAD can often be cyclical so the symptoms of Cushing's syndrome will not always be as severe, which may complicate diagnosis. The classic symptoms of Cushing's syndrome include rapid central weight gain, a puffy red face and a buffalo hump at the back of the neck due to fat deposits. Skin changes in Cushing's syndrome include thinning and bruising easily, developing striae and hyperpigmentation at skin folds. The hormonal changes can lead to hirsuitism, males developing breast tissue, females no longer having periods and both sexes may become infertile. High cortisol levels can lead to psychological disturbances such as anxiety or depression and insomnia. Bone health can deteriorate, leading to an increased fracture risk in people with Cushing's syndrome. PPNAD is unique as it often causes Cushing's at a young age, in children and adolescents. In addition to the other symptoms of Cushing's syndrome, the patient may have a short stature due to interrupted growth because of ACTH suppression.
In 90% of people with PPNAD it is associated with Carney Complex. Carney Complex is usually inherited, however it can also occur sporadically. A visible sign of Carney complex is abnormal skin hyperpigmentation. There may also be myxomas which can appear as lumps in the skin and breast as well as often being present in the heart, which can lead to multiple cardiovascular problems. The majority of people with PPNAD will have some of these signs/symptoms due to the strong association between PPNAD and Carney Complex.
After diagnosis, it is important for patients to be continually monitored. The most common treatment for PPNAD is bilateral laparoscopic adrenalectomy; the process by which both adrenal glands are removed by a small incision.
Patients who have received this treatment will be prescribed mineralocorticoid and glucocorticoid steroids as they are no longer being naturally produced.
This is a treatment which has been used and refined since 1984.
Because hyperandrogenism can appear as a symptom of numerous different genetic and medical conditions, it is difficult to make a general statement on whether hyperandrogenic symptoms can be passed from parent to offspring. However, a collection of the conditions with hyperandrogenic symptoms, including polycystic ovary syndrome, have been observed as hereditary in certain cases. One potential cause of polycystic ovary syndrome is maternal hyperandrogenism, where the hormonal irregularities of the mother can affect the development of the child during gestation, resulting in the passing of polycystic ovary syndrome from mother to child.
Cushing syndrome develops due to long-term exposure to the hormone cortisol. Cushing’s syndrome can either be exogenous or endogenous, depending on whether it is caused by an external or internal source, respectively. The intake of glucocorticoids, which are a type of steroid hormone, is a common cause for the development of exogenous Cushing’s syndrome. Endogenous Cushing’s syndrome can occur when the body produces excessive amounts of cortisol. This occurs when the hypothalamus of the brain transmits corticotropin-releasing hormone (CRH) to the pituitary gland, which in turn secretes adrenocorticotropin hormone (ACTH). ACTH causes the adrenal glands to then release cortisol into the blood. Signs of Cushing’s syndrome include muscle weakness, easy bruising, weight gain, male-pattern hair growth (hirsutism), colored stretch marks, and excess of reddish complexion in the face. Cushing’s syndrome has been shown to cause androgen excess, which directly links it to the signs and symptoms seen in hyperandrogenism.
ACC, generally, carries a poor prognosis and is unlike most tumours of the adrenal cortex, which are benign (adenomas) and only occasionally cause Cushing's syndrome. Five-year disease-free survival for a complete resection of a stage I–III ACC is approximately 30%.
The most important prognostic factors are age of the patient and stage of the tumor.
Poor prognostic factors: mitotic activity, venous invasion, weight of 50g+; diameter of 6.5 cm+, Ki-67/MIB1 labeling index of 4%+, p53+.
Prostate cancer is the second most common urological malignancy to be associated with paraneoplastic syndromes after renal cell carcinoma. Paraneoplastic syndromes of this nature tend to occur in the setting of late stage and aggressive tumors with poor overall outcomes (endocrine manifestations, neurological entities, dermatological conditions, and other syndromes). A vast majority of prostate cancer cases (over 70%) document paraneoplastic syndrome as a major clinical manifestation of prostate cancer; and interestingly (under 20%), the syndrome as an initial sign of disease progression to the castrate-resistant state. Urologist researchers identify serum markers that are associated with the syndrome in order to specific what type of therapies may work most effectively.
Paraneoplastic neurological syndromes may be related immune checkpoint inhibitors (ICIs), one of the underlying causes in inflammatory central nervous system diseases (CNS). The central idea around such research pinpoints treatment strategies to combat cancer related outcomes in the clinical arena, specifically ICIs. Research suggests that patients who are treated with ICIs are more susceptible to CNS disease (since the mechanism of ICIs induces adverse effects on the CNS due to augmented immune responses and neurotoxicity). The purpose of this exploration was to shed light on immunotherapies and distinguishing between neurotoxicity and brain metastasis in the early stages of treatment. In other research, scientists have found that paraneoplastic peripheral nerve disorders (autoantibodies linked to multifocal motor neuropathy) may provide important clinical manifestations. This is especially important for patients who experience inflammatory neuropathies since solid tumors are often associated with peripheral nerve disorders. CV2 autoantibodies, which target dihydropyriminase-related protein 5 (DRP5, or CRMP5) are also associated with a variety of paraneoplastic neurological syndromes, including sensorimotor polyneuropathies. Interestingly, patients undergoing immune therapies or tumor removal respond very well to antibodies that target CASPR2 (to treat nerve hyperexcitability and neuromyotonia).
In the case of paraneoplastic Cushing's syndrome arising from a small cel carcinoma of the endometrium, paraneoplastic syndrome has been seen to interfere with standard treatments and lead to unexpected complications and clinical course. The purpose of this clinical case demonstrates the aggressive nature of the neuroendocrine small cell carcinoma with rapid invasion and extra-uterine spread. The researchers raise recognition for timely recognition of paraneoplastic syndrome, which in this particular case use a combinatorial therapy of etoposide and cisplatin chemotherapy to save the 32-year old female patient's life (presented with persistent migraine-like headache, palpitations, progressive nausea and vomiting, photo- and sonobia, menometrorrhagia and concomitant general fatigue).
Genetically, there is a postzygotic mutation (spontaneous mutation) of the gene GNAS, on the long (q) arm of chromosome 20 at position 13.3, which is involved in G-protein signaling. This mutation, which occurs only in the mosaic state, leads to constitutive receptor signaling and inappropriate production of excess cAMP.
The mutation that causes McCune–Albright syndrome arises very early during embryogenesis. It is not passed down from parent to child. There are no known risk factors for acquiring McCune–Albright syndrome, and no exposures during pregnancy that are known to either cause or prevent the mutation from occurring.
The mechanism of development of Cushing ulcers is thought to be due to direct stimulation of vagal nuclei as a result of increased intracranial pressure. Alternatively, it may also be a direct result of Cushing reaction. Efferent fibers of the vagus nerve then release acetylcholine onto gastric parietal cell M receptors, causing insertion of hydrogen potassium ATPase vesicles into the apical plasma membrane. The end result is increased secretion of gastric acid with eventual ulceration of the gastric mucosa.
Treatment options include:
1. Therapies to eliminate the underlying cancer, such as chemotherapy, radiation and surgery.
2. Therapies to reduce or slow neurological degeneration. In this scenario, rapid diagnosis and treatment are critical for the patient to have the best chance of recovery. Since these disorders are relatively rare, few doctors have seen or treated paraneoplastic neurological disorders (PNDs). Therefore, PND patients should consult with a specialist with experience in diagnosing and treating paraneoplastic neurological disorders.
A specific prognosis for those afflicted with paraneoplastic syndromes links to each unique case presented. Thus, prognosis for paraneoplastic syndromes may vary greatly. For example, paraneoplastic pemphigus often included infection as a major cause of death. Paraneoplastic pemphigus is one of the three major subtypes that affects IgG autoantibodies that are characteristically raised against desmoglein 1 and desmoglein 3 (which are cell-cell adhesion molecules found in desmosomes). Underlying cancer or irreversible system impairment, seen in acute heart failure or kidney failure, may result in death as well.
Cardiac myxomas can be difficult to manage surgically because of recurrence within the heart, often far away from the site of the initial tumor.
Although estimates vary, the annual incidence of clinically significant neuroendocrine tumors is approximately 2.5–5 per 100,000; two thirds are carcinoid tumors and one third are other NETs.
The prevalence has been estimated as 35 per 100,000, and may be considerably higher if clinically silent tumors are included. An autopsy study of the pancreas in people who died from unrelated causes discovered a remarkably high incidence of tiny asymptomatic NETs. Routine microscopic study of three random sections of the pancreas found NETs in 1.6%, and multiple sections identified NETs in 10%. As diagnostic imaging increases in sensitivity, such as endoscopic ultrasonography, very small, clinically insignificant NETs may be coincidentally discovered; being unrelated to symptoms, such neoplasms may not require surgical excision.
Adrenocortical carcinoma may present differently in children and adults. Most tumors in children are functional, and virilization is by far the most common presenting symptom, followed by Cushing's syndrome and precocious puberty. Among adults presenting with hormonal syndromes, Cushing's syndrome alone is most common, followed by mixed Cushing's and virilization (glucocorticoid and androgen overproduction). Feminization and Conn syndrome (mineralocorticoid excess) occur in less than 10% of cases. Rarely, pheochromocytoma-like hypersecretion of catecholamines has been reported in adrenocortical cancers. Non-functional tumors (about 40%, authorities vary) usually present with abdominal or flank pain, varicocele and renal vein thrombosis or they may be asymptomatic and detected incidentally.
All patients with suspected adrenocortical carcinoma should be carefully evaluated for signs and symptoms of hormonal syndromes. For Cushing's syndrome (glucocorticoid excess) these include weight gain, muscle wasting, purple lines on the abdomen, a fatty "buffalo hump" on the neck, a "moonlike" face, and thinning, fragile skin. Virilism (androgen excess) is most obvious in women, and may produce excess facial and body hair, acne, enlargement of the clitoris, deepening of the voice, coarsening of facial features, cessation of menstruation. Conn syndrome (mineralcorticoid excess) is marked by high blood pressure which can result in headache and hypokalemia (low serum potassium, which can in turn produce muscle weakness, confusion, and palpitations) low plasma renin activity, and high serum aldosterone. Feminization (estrogen excess) is most readily noted in men, and includes breast enlargement, decreased libido and impotence.
A Cushing ulcer, named after Harvey Cushing, is a gastric ulcer associated with elevated intracranial pressure. It is also called von Rokitansky-Cushing syndrome. Apart from in the stomach, ulcers may also develop in the proximal duodenum and distal esophagus.
Most pancreatic NETs are sporadic. However, neuroendocrine tumors can be seen in several inherited familial syndromes, including:
- multiple endocrine neoplasia type 1 (MEN1)
- multiple endocrine neoplasia type 2 (MEN2)
- von Hippel-Lindau (VHL) disease
- neurofibromatosis type 1
- tuberous sclerosis
- Carney complex
Given these associations, recommendations in NET include family history evaluation, evaluation for second tumors, and in selected circumstances testing for germline mutations such as for MEN1.
McCune–Albright syndrome is suspected when two or more of the following features are present:
- Hyperfunctioning endocrine disease (gonadotropin independent precocious puberty, hyperthyroidism, growth hormone excess, neonatal Cushing syndrome)
- Fibrous dysplasia
- Café au lait macules
Patients may have one or many of these features, which may occur in any combination.
The clinical presentation varies greatly depending on the disease features. Patients with fibrous dysplasia may have bone fractures, pain, and deformities.
Cafe-au-lait skin macules tend to have characteristic features, including jagged "coast of Maine" borders, and location respecting the midline of the body.
Endocrine disease in McCune–Albright syndrome results from increased hormone production. The most common endocrinopathy is precocious puberty, which presents in girls with recurrent estrogen-producing cysts leading to episodic breast development, growth acceleration, and vaginal bleeding. Precocious puberty may also occur in boys with McCune–Albright syndrome, but is much less common. Additional potential endocrinopathies include hyperthyroidism and growth hormone excess. Cushing syndrome is a very rare feature that develops only in infancy. Patients with polyostotic fibrous dysplasia may develop low blood phosphate levels due to overproduction of the hormone fibroblast growth factor-23.
McCune–Albright syndrome has different levels of severity. For example, one child with McCune–Albright syndrome may be entirely healthy, with no outward evidence of bone or endocrine problems, enter puberty at close to the normal age, and have no unusual skin pigmentation. Diagnosis may be made only after decades. In other cases, children are diagnosed in early infancy, show obvious bone disease, and obvious increased endocrine secretions from several glands.
Achard–Thiers syndrome combines the features of adrenogenital syndrome and Cushing syndrome. It is also known as diabetic-bearded woman syndrome (diabète des femmes à barbe) and occurs mainly in post-menopausal women.
The disease is named for Emile Achard and Joseph Thiers.
Achard–Thiers syndrome affects mostly postmenopausal women and comprises diabetes mellitus, deep voice, hirsutism or hypertrichosis, clitoral hypertrophy and adrenal cortical hyperplasia or adenoma. Patients often also have amenorrhoea, hypertension and osteoporosis.
Carney complex and its subsets LAMB syndrome and NAME syndrome are autosomal dominant conditions comprising myxomas of the heart and skin, hyperpigmentation of the skin (lentiginosis), and endocrine overactivity. It is distinct from Carney's triad. Approximately 7% of all cardiac myxomas are associated with Carney complex.
Prediabetes indicates a condition that occurs when a person's blood glucose levels are higher than normal but not high enough for a diagnosis of type 2 DM.
Many people destined to develop type 2 DM spend many years in a state of prediabetes.
Latent autoimmune diabetes of adults (LADA) is a condition in which type 1 DM develops in adults. Adults with LADA are frequently initially misdiagnosed as having type 2 DM, based on age rather than cause.
Some cases of diabetes are caused by the body's tissue receptors not responding to insulin (even when insulin levels are normal, which is what separates it from type 2 diabetes); this form is very uncommon. Genetic mutations (autosomal or mitochondrial) can lead to defects in beta cell function. Abnormal insulin action may also have been genetically determined in some cases. Any disease that causes extensive damage to the pancreas may lead to diabetes (for example, chronic pancreatitis and cystic fibrosis). Diseases associated with excessive secretion of insulin-antagonistic hormones can cause diabetes (which is typically resolved once the hormone excess is removed). Many drugs impair insulin secretion and some toxins damage pancreatic beta cells. The ICD-10 (1992) diagnostic entity, "malnutrition-related diabetes mellitus" (MRDM or MMDM, ICD-10 code E12), was deprecated by the World Health Organization when the current taxonomy was introduced in 1999.
Other forms of diabetes mellitus include congenital diabetes, which is due to genetic defects of insulin secretion, cystic fibrosis-related diabetes, steroid diabetes induced by high doses of glucocorticoids, and several forms of monogenic diabetes.
"Type 3 diabetes" has been suggested as a term for Alzheimer's disease as the underlying processes may involve insulin resistance by the brain.
The following is a comprehensive list of other causes of diabetes:
- Genetic defects of β-cell function
- Maturity onset diabetes of the young
- Mitochondrial DNA mutations
- Genetic defects in insulin processing or insulin action
- Defects in proinsulin conversion
- Insulin gene mutations
- Insulin receptor mutations
- Exocrine pancreatic defects
- Chronic pancreatitis
- Pancreatectomy
- Pancreatic neoplasia
- Cystic fibrosis
- Hemochromatosis
- Fibrocalculous pancreatopathy
- Endocrinopathies
- Growth hormone excess (acromegaly)
- Cushing syndrome
- Hyperthyroidism
- Pheochromocytoma
- Glucagonoma
- Infections
- Cytomegalovirus infection
- Coxsackievirus B
- Drugs
- Glucocorticoids
- Thyroid hormone
- β-adrenergic agonists
- Statins
Type 2 DM is characterized by insulin resistance, which may be combined with relatively reduced insulin secretion. The defective responsiveness of body tissues to insulin is believed to involve the insulin receptor. However, the specific defects are not known. Diabetes mellitus cases due to a known defect are classified separately. Type 2 DM is the most common type of diabetes mellitus.
In the early stage of type 2, the predominant abnormality is reduced insulin sensitivity. At this stage, high blood sugar can be reversed by a variety of measures and medications that improve insulin sensitivity or reduce the liver's glucose production.
Type 2 DM is primarily due to lifestyle factors and genetics. A number of lifestyle factors are known to be important to the development of type 2 DM, including obesity (defined by a body mass index of greater than 30), lack of physical activity, poor diet, stress, and urbanization. Excess body fat is associated with 30% of cases in those of Chinese and Japanese descent, 60–80% of cases in those of European and African descent, and 100% of Pima Indians and Pacific Islanders. Even those who are not obese often have a high waist–hip ratio.
Dietary factors also influence the risk of developing type 2 DM. Consumption of sugar-sweetened drinks in excess is associated with an increased risk. The type of fats in the diet is also important, with saturated fat and trans fats increasing the risk and polyunsaturated and monounsaturated fat decreasing the risk. Eating lots of white rice also may increase the risk of diabetes. A lack of physical activity is believed to cause 7% of cases.