Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Unlike other autoinflammatory disorders, patients with CANDLE do not respond to IL-1 inhibition treatment in order to stop the autoinflammatory response altogether. This suggests that the condition also involves IFN dysregulation.
Cryopyrin-associated periodic syndrome (CAPS) is a group of rare, heterogeneous autoinflammatory disease characterized by interleukin 1β-mediated systemic inflammation and clinical symptoms involving skin, joints, central nervous system, and eyes. It encompasses a spectrum of three clinically overlapping autoinflammatory syndromes including familial cold autoinflammatory syndrome (FCAS, formerly termed familial cold-induced urticaria), the Muckle–Wells syndrome (MWS), and neonatal-onset multisystem inflammatory disease (NOMID, also called chronic infantile neurologic cutaneous and articular syndrome or CINCA) that were originally thought to be distinct entities, but in fact share a single genetic mutation and pathogenic pathway.
The life span in patients with Schnitzler syndrome has not been shown to differ much from the general population. Careful follow-up is advised, however. A significant proportion of patients develops a lymphoproliferative disorder as a complication, most commonly Waldenström's macroglobulinemia. This may lead to symptoms of hyperviscosity syndrome. AA amyloidosis has also been reported in people with Schnitzler syndrome.
Overall, the prognosis for patients with NOMID is not good, though many (80%) live into adulthood, and a few appear to do relatively well. They are at risk for leukemia, infections, and some develop deposits of protein aggregated called amyloid, which can lead to kidney failure and other problems. The neurologic problems are most troubling. The finding that other diseases are related and a better understanding of where the disease comes from may lead to more effective treatments.
This is a rare condition with an incidence estimated to be less than 1 in a million live births. About 100 cases have been reported worldwide. The bulk of cases are sporadic but familial forms with autosomal dominant transmission have also been described.
TNF receptor associated periodic syndrome is autosomal dominant, and about 70 mutations of the TNFRSF1A gene have been linked to this condition. Its cytogenetic location is at 12p13.31
TNF receptor associated periodic syndrome (also known as TRAPS,) is a periodic fever syndrome associated with mutations in a receptor for the molecule tumor necrosis factor (TNF) that is inheritable in an autosomal dominant manner. Individuals with TRAPS have episodic symptoms such as recurrent high fevers, rash, abdominal pain, joint/muscle aches and puffy eyes.
Periodic fever syndromes (also known as autoinflammatory diseases or autoinflammatory syndromes) are a set of disorders characterized by recurrent episodes of systemic and organ-specific inflammation. Unlike autoimmune disorders such as systemic lupus erythematosus, in which the disease is caused by abnormalities of the adaptive immune system, patients with autoinflammatory diseases do not produce autoantibodies or antigen-specific T or B cells. Instead, the autoinflammatory diseases are characterized by errors in the innate immune system.
The syndromes are diverse, but tend to cause episodes of fever, joint pains, skin rashes, abdominal pains and may lead to chronic complications such as amyloidosis.
Most autoinflammatory diseases are genetic and present during childhood. The most common genetic autoinflammatory syndrome is familial Mediterranean fever, which causes short episodes of fever, abdominal pain, serositis, lasting less than 72 hours. It is caused by mutations in the MEFV gene, which codes for the protein pyrin.
Pyrin is a protein normally present in the inflammasome. The mutated pyrin protein is thought to cause inappropriate activation of the inflammasome, leading to release of the pro-inflammatory cytokine IL-1β. Most other autoinflammatory diseases also cause disease by inappropriate release of IL-1β. Thus, IL-1β has become a common therapeutic target, and medications such as anakinra, rilonacept, and canakinumab have revolutionized the treatment of autoinflammatory diseases.
However, there are some autoinflammatory diseases that are not known to have a clear genetic cause. This includes PFAPA, which is the most common autoinflammatory disease seen in children, characterized by episodes of fever, aphthous stomatitis, pharyngitis, and cervical adenitis. Other autoinflammatory diseases that do not have clear genetic causes include adult-onset Still's disease, systemic-onset juvenile idiopathic arthritis, Schnitzler syndrome, and chronic recurrent multifocal osteomyelitis. It is likely that these diseases are multifactorial, with genes that make people susceptible to these diseases, but they require an additional environmental factor to trigger the disease.
Another example that shows that autoinflamatory conditions may not be genetic in origin is found in a report published in "Nature" which shows that diet is very important in the development of such diseases. The ingestion levels of highly saturated fats and cholesterol, (high fat diet, HFD) affects the microbiota composition of the gut. Changes in the microbiota induced by a HFD are protective against the susceptibility to develop osteomyelitis (autoimmune disease) as compared with the changes induced by a low-fat diet. The changes in the microbiome of individuals under HFD showed a reduction in "Prevotella" abundance and were accompanied by significantly reduced expression levels of pro-Interleukin-1β in distant neutrophils.
The syndromes within CAPS overlap clinically, and patients may have features of more than one disorder. In a retrospective cohort of 136 CAPS patients from 16 countries, the most prevalent clinical features were fever (84% of cases, often with concurrent constitutional symptoms such as fatigue, malaise, mood disorders or failure to thrive), skin rash (either urticarial or maculopapular rash; 97% of cases) especially after cold exposure, and musculoskeletal involvement (myalgia, arthralgia, and/or arthritis, or less commonly joint contracture, patellar overgrowth, bone deformity, bone erosion and/or osteolytic lesion; 86% of cases). Less common features included ophthalmological involvement (conjunctivitis and/or uveitis, or less commonly optic nerve atrophy, cataract, glaucoma or impaired vision; 71% of cases), neurosensory hearing loss (42% of cases), neurological involvement (morning headache, papilloedema, and/or meningitis, or less commonly seizure, hydrocephalus or mental retardation; 40% of cases), and AA amyloidosis (4% of cases). Age of onset is typically in infancy or early childhood. In 57% of cases, CAPS had a chronic phenotype with symptoms present almost daily, whereas the remaining 43% of patients experienced only acute episodes. Up to 56% of patients reported a family history of CAPS. Previous studies confirm these symptoms, although the exact reported rates vary.
It is not known how mevalonate kinase mutations cause the febrile episodes, although it is presumed that other products of the cholesterol biosynthesis pathyway, the prenylation chains (geranylgeraniol and farnesol) might play a role.
The most common known cause of the syndrome are mutations in the Proteasome Subunit, Beta Type, 8 (PSMB8) gene that codes for proteasomes that in turn break down other proteins. This occurs specifically when a mutation causes the homozygous recessive form to emerge. The mutated gene results in proteins not being degraded and oxidative proteins building up in cellular tissues, eventually leading to apoptosis, especially in muscle and fat cells.
A study conducted by Brehm et al. in November 2015 discovered additional mutations that can cause CANDLE syndrome, including PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and the proteasome maturation protein (POMP), with 8 mutations in total between them. An additional unknown mutation type in the original PSMB8 gene was also noted.
The chronic inflammation present in MWS over time can lead to deafness. In addition, the prolonged inflammation can lead to deposition of proteins in the kidney, a condition known as amyloidosis.
MWS occurs when a mutation in the "CIAS1" gene, encoding for NLRP3, leads to increased activity of the protein cryopyrin. This protein is partly responsible for the body's response to damage or infection. During these states, a cytokine called interleukin 1β is produced by an innate immune cell known as a macrophage. This cytokine interacts with a receptor on the surface of other immune cells to produce symptoms of inflammation such as fever, arthritis, and malaise. In MWS, the increased activity of cryopyrin leads to an increase in interleukin 1β. This leads to inflammation all throughout the body with the associated symptoms.
Virtually all people with the syndrome have mutations in the gene for mevalonate kinase, which is part of the HMG-CoA reductase pathway, an important cellular metabolic pathway. Indeed, similar fever attacks (but normal IgD) have been described in patients with mevalonic aciduria – an inborn error of metabolism now seen as a severe form of HIDS.
Löfgren syndrome is associated with a good prognosis, with > 90% of patients experiencing disease resolution within 2 years. In contrast, patients with the disfiguring skin condition lupus pernio or cardiac or neurologic involvement rarely experience disease remission.
By definition, primary immune deficiencies are due to genetic causes. They may result from a single genetic defect, but most are multifactorial. They may be caused by recessive or dominant inheritance. Some are latent, and require a certain environmental trigger to become manifest, like the presence in the environment of a reactive allergen. Other problems become apparent due to aging of bodily and cellular maintenance processes.
CRMO was once considered strictly a childhood disease, but adults have been diagnosed with it. The affected tends to range from 4 to 14 years old, with 10 as the median age. As stated above, CRMO occurs 1:1,000,000 and primarily in girls with a 5:1 ratio. That means out of six million, there will probably be 5 girls and 1 boy with the condition.
A survey of 10,000 American households revealed that the prevalence of diagnosed primary immunodeficiency approaches 1 in 1200. This figure does not take into account people with mild immune system defects who have not received a formal diagnosis.
Milder forms of primary immunodeficiency, such as selective immunoglobulin A deficiency, are fairly common, with random groups of people (such as otherwise healthy blood donors) having a rate of 1:600. Other disorders are distinctly more uncommon, with incidences between 1:100,000 and 1:2,000,000 being reported.
Although it may occur in the absence of other known disease, SS is often associated with hematologic disease (including leukemia), and immunologic disease (rheumatoid arthritis, inflammatory bowel disease, Behçet's syndrome).
A genetic association has been suggested, but no specific genetic link has been identified.
Prognosis will depend on your child's individual disease and response to treatment. It is best to discuss the prognosis with your child's pediatric rheumatologist.
SS is a reactive phenomenon and should be considered a cutaneous marker of systemic disease. Careful systemic evaluation is indicated, especially when cutaneous lesions are severe or hematologic values are abnormal. Approximately 20% of cases are associated with malignancy, predominantly hematological, especially acute myelogenous leukemia (AML). An underlying condition (streptococcal infection, inflammatory bowel disease, nonlymphocytic leukemia and other hematologic malignancies, solid tumors, pregnancy) is found in up to 50% of cases. Attacks of SS may precede the hematologic diagnosis by 3 months to 6 years, so that close evaluation of patients in the “idiopathic” group is required.
There is now good evidence that treatment with hematopoietic growth factors — including granulocyte colony-stimulating factor (G-CSF), which is used to treat AML, and granulocyte-macrophage colony-stimulating factor — can cause SS. Lesions typically occur when the patient has leukocytosis and neutrophilia but not when the patient is neutropenic. However, G-CSF may cause SS in neutropenic patients because of the induction of stem cell proliferation, the differentiation of neutrophils, and the prolongation of neutrophil survival.
NSAIDs (non steroid anti-inflammatory drug) are the usual recommended treatment for Löfgren syndrome.
Some horse organizations have instituted rules to attempt to eliminate this widespread disease. The American Quarter Horse Association (AQHA) mandates testing for foals descended from Impressive if both of the foal's parents were not homozygous negative (N/N) for the gene, and, since 2007, has not registered foals homozygous (H/H) for the gene. Since 2007, the Appaloosa Horse Club (ApHC) has required foals descended from Impressive to be tested, so that the results may be recorded on its certificate. The American Paint Horse Association (APHA) mandated that, after 2017, stallions must be tested for HYPP so that mare owners may make an informed decision before choosing a stallion for breeding to their mare.
Respiratory complications are often cause of death in early infancy.
PAPA syndrome is inherited in an autosomal dominant fashion, which means that if one parent is affected, there is a 100% chance that a child will inherit the disease from a homozygous affected parent and a 50% chance that a
child will inherit the disease from an affected heterozygous parent.
Recently the responsible gene has been identified on Chromosome 15. Two mutations have been found in a protein called CD2 binding protein 1 (CD2BP1).
This protein is part of an inflammatory pathway associated with other autoinflammatory diseases such as familial Mediterranean fever, Hyperimmunoglobulinemia D with recurrent fever, Muckle–Wells syndrome, neonatal onset multisystem inflammatory disease, and familial cold urticaria.