Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There are approximately three hundred known cases of Carpenter Syndrome in the United States. Only 1 in 1 million live births will result in an infant affected by Carpenter Syndrome (RN, 2007).
Carpenter Syndrome is an autosomal recessive disease which means both parents must have the faulty genes in order to pass the disease onto their children. Even if both parents possess the faulty gene there is still only a twenty five percent chance that they will produce a child affected by the syndrome. Their children who do not have the disease will still be carriers and possess the ability to pass the disease onto their offspring if their spouse is also a carrier of the particular gene.
Children with Pfeiffer syndrome types 2 and 3 "have a higher risk for neurodevelopmental disorders and a reduced life expectancy" than children with Pfeiffer syndrome type 1, but if treated, favorable outcomes are possible. In severe cases, respiratory and neurological complications often lead to early death.
In terms of epidemiology, Jackson–Weiss syndrome is a rare genetic disorder; the overall contribution of FGFR mutation to the condition is not clear.
SCS is the most common craniosynostosis syndrome and affects 1 in every 25,000 to 50,000 individuals. It occurs in all racial and ethnic groups, and affects males and females equally. If a parent carries a copy of the SCS gene mutation, then there is a 50% chance their child will also carry a copy of the gene mutation, in which case, the child may or may not show signs of SCS. There is also a 50% chance their child will have two working copies of the gene, and would therefore, not have SCS. If both parents carry a single copy of the SCS gene mutation, then there is a 25% chance their child will have two gene mutation copies (so child would develop severe SCS), a 25% chance their child would have two normal copies of the gene (so would be completely normal), and a 50% chance their child would carry one gene mutation copy and 1 normal copy (so child may or may not display SCS). In rare situations, two normal parents can have a child with SCS due to a "de novo" mutation. The exact cause of the "de novo" mutation is unknown, but it doesn't seem to be related to anything that the parents did or didn't do during the pregnancy. SCS due to a "de novo" mutation is so rare that the proportion of past cases is unknown.
Carpenter syndrome has been associated with mutations in the RAB23 gene, which is located on chromosome 6 in humans. Additionally, three key SNPs in the MEGF8 gene, located on chromosome 19 at 19q13.2, have been identified as primary causes of Carpenter syndrome.
Environmental factors refer for example to maternal smoking and the maternal exposure to amine-containing drugs. Several research groups have found evidence that these environmental factors are responsible for an increase in the risk of craniosynostosis, likely through effects on fibroblast growth factor receptor genes.
On the other hand, a recent evaluation of valproic acid (an anti-epilepticum), which has been implicated as a causative agent, has shown no association with craniosynostosis.
Certain medication (like amine-containing drugs) can increase the risk of craniosynostosis when taken during pregnancy, these are so-called teratogenic factors.
Incidence of Crouzon syndrome is currently estimated to occur in 1.6 out of every 100,000 people. There is a greater frequency in families with a history of the disorder, but that doesn't mean that everyone in the family is affected (as referred to above).
The key problem is the early fusion of the skull, which can be corrected by a series of surgical procedures, often within the first three months after birth. Later surgeries are necessary to correct respiratory and facial deformities.
Muenke syndrome is caused by a specific gene mutation in the FGFR3 gene. The mutation arises randomly; there is no full understanding for what causes this mutation. This mutation causes the FGFR3 protein to be overly active; it interferes with normal bone growth, and allows skull bones to fuse prematurely. There is no connection between anything mother did (or did not do) to activate the syndrome. If neither of the parents have Muenke syndrome, chances of having another child with the syndrome are minimal.
This condition is inherited in an autosomal dominant pattern. This means if a parent has Muenke syndrome, every newborn has a 50% chance of inheriting the syndrome.
Although no cause has been officially confirmed, researchers speculate the disease might result from a genetic mutation that sporadically occurs for unknown reasons.
Omphalocele has been described in two patients with Apert syndrome by Herman T.E. et al. (USA, 2010) and by Ercoli G. et al. (Argentina, 2014). An omphalocele is a birth defect in which an intestine or other abdominal organs are outside of the body of an infant because of a hole in the bellybutton area. However, the association between omphalocele and Apert syndrome is not confirmed yet, so additional studies are necessary.
Biomechanical factors include fetal head constraint during pregnancy. It has been found by Jacob et al. that constraint inside the womb is associated with decreased expression of Indian Hedgehog protein and noggin. These last two are both important factors influencing bone development.
There is still some discussion on whether FND is sporadic or genetic. The majority of FND cases are sporadic. Yet, some studies describe families with multiple members with FND. Gene mutations are likely to play an important role in the cause. Unfortunately, the genetic cause for most types of FND remains undetermined.
Muenke syndrome is inherited in an autosomal dominant pattern. In some cases, an affected person inherits the mutation from one affected parent. If a patient is shown to have Muenke, they have a 50/50 chance of passing it on to their children. Not all cases of Muenke however is obvious. Other cases may result from new mutations in the gene. These cases occur in people with no history of the disorder in their family.
A single mutation in the FGFR3 gene cause this syndrome. The FGFR3 gene provides instructions for making a protein that is involved in the development and maintenance of bone and brain tissue. This mutation causes the FGFR3 protein to be overly active, which interferes with normal bone growth and allows the bones of the skull to fuse before they should.
As stated by researchers at the University of Washington, Muenke syndrome is inherited in an autosomal dominant manner with incomplete penetrance and variable expressivity.” Prenatal diagnosis for pregnancies at increased risk is possible if the defining mutation has been identified in the family (Agochukwu et.al. 2006). According to the article "Craniosynostosis: Molecular Genetics," penetrance is higher in females (87%) than in males (76%). Muenke syndrome is estimated to account for 25%-30% of all genetic causes of craniosynostosis according to the Journal of Anatomy.
Prenatal diagnosis of Saethre-Chotzen Syndrome in high risk pregnancies is doable, but very uncommon and rarely performed. Furthermore, this is only possible if the mutation causing the disease has already been identified within the family genome. There are a few different techniques in which prenatal testing can be carried out. Prenatal testing is usually performed around 15–18 weeks, using amniocentesis to extract DNA from the fetus's cells. Prenatal testing can also be performed during weeks 10-12 using chorionic villus sampling (CVS) to extract DNA from the fetus. Recently, there has been an increased interest in utilizing ultrasound equipment in order to detect fetal skull abnormalities due to immature fusion of the cranial sutures.
Acrocephalosyndactyly may be an autosomal dominant disorder. Males and females are affected equally; however research is yet to determine an exact cause. Nonetheless, almost all cases are sporadic, signifying fresh mutations or environmental insult to the genome. The offspring of a parent with Apert syndrome has a 50% chance of inheriting the condition. In 1995, A.O.M. Wilkie published a paper showing evidence that acrocephalosyndactyly is caused by a defect on the fibroblast growth factor receptor 2 gene, on chromosome 10.
Apert syndrome is an autosomal dominant disorder; approximately two-thirds of the cases are due to a C to G mutation at the position 755 in the FGFR2 gene, which causes a Ser to Trp change in the protein. This is a male-specific mutation hotspot: in a study of 57 cases, the mutation always occurred on the paternally derived allele. On the basis of the observed birth prevalence of the disease (1 in 70,000), the apparent rate of C to G mutations at this site is about .00005, which is 200- to 800-fold higher than the usual rate for mutations at CG dinucleotides. Moreover, the incidence rises sharply with the age of the father. Goriely et al. (2003) analyzed the allelic distribution of mutations in sperm samples from men of different ages and concluded that the simplest explanation for the data is that the C to G mutation gives the cell an advantage in the male germline.
It is still not very clear why people with Apert Syndrome have both craniosynostosis and syndactyly. There has been one study that suggests it has something to do with the expression of three isoforms of FGFR2, the gene with the point mutations that causes the syndrome in 98% of the patients.
KGFR, keratinocyte growth factor receptor, is an isoform active in the metaphysis and interphalangeal joints. FGFR1 is an isoform active in the diaphysis. FGFR2-Bek is active in the metaphysis, as well as the diaphysis, but also in the interdigital mesenchyme. The point mutation increases the ligand-dependent activation of FGFR2, and thus of its isoforms. This means that FGFR2 loses its specificity, causing binding of FGFs that normally do not bind to the receptor. Since FGF suppresses apoptosis, the interdigital mesenchyme is maintained. FGF also increases replication and differentiation of osteoblasts, thus early fusion of several sutures of the skull. This may explain why both symptoms are always found in Apert Syndrome.
OAFNS is a combination of FND and oculo-auriculo-vertebral spectrum (OAVS).
The diagnosis of OAVS is based on the following facial characteristics: microtia (underdeveloped external ear), preauricular tags, facial asymmetry, mandibular hypoplasia and epibulbar lipodermoids (benign tumor of the eye which consists of adipose and fibrous tissue).
There still remains discussion about the classification and the minimal amount of characteristics. When someone presents with FND and the characteristics of OAVS, the diagnosis OAFNS may be made.
As the incidence of OAFNS is unknown, there are probably a lot of children with mild phenotypes that aren’t being diagnosed as being OAFNS.
The cause of OAFNS is unknown, but there are some theories about the genesis. Autosomal recessive inheritance is suggested because of a case with two affected siblings and a case with consanguineous parents. However, another study shows that it is more plausible that OAFNS is sporadic.
It is known that maternal diabetes plays a role in developing malformations of craniofacial structures and in OAVS. Therefore, it is suggested as a cause of OAFNS. Folate deficiency is also suggested as possible mechanism.
Low-dose CT protocols should be considered in diagnosing children with OAFNS.
Crouzon syndrome is an autosomal dominant genetic disorder known as a branchial arch syndrome. Specifically, this syndrome affects the first branchial (or pharyngeal) arch, which is the precursor of the maxilla and mandible. Since the branchial arches are important developmental features in a growing embryo, disturbances in their development create lasting and widespread effects.
This syndrome is named after Octave Crouzon, a French physician who first described this disorder. He noted the affected patients were a mother and her daughter, implying a genetic basis. First called "craniofacial dysostosis", the disorder was characterized by a number of clinical features. This syndrome is caused by a mutation in the fibroblast growth factor receptor II, located on chromosome 10.
Breaking down the name, "craniofacial" refers to the skull and face, and "dysostosis" refers to malformation of bone.
Now known as Crouzon syndrome, the characteristics can be described by the rudimentary meanings of its former name. What occurs is that an infant's skull and facial bones, while in development, fuse early or are unable to expand. Thus, normal bone growth cannot occur. Fusion of different sutures leads to different patterns of growth of the skull.
Examples include: trigonocephaly (fusion of the metopic suture), brachycephaly (fusion of the coronal suture), dolichocephaly (fusion of the sagittal suture), plagiocephaly (unilateral premature closure of lambdoid and coronal sutures), oxycephaly (fusion of coronal and lambdoidal sutures), Kleeblattschaedel (premature closure of all sutures).
Heart-hand syndrome type 2 is also known as Berk–Tabatznik syndrome. Berk–Tabatznik syndrome is a condition with an unknown cause that shows symptoms of short stature, congenital optic atrophy and brachytelephalangy. This condition is extremely rare with only two cases being found.
Craniofrontonasal dysplasia is a very rare genetic condition. As such there is little information and no consensus in the published literature regarding the epidemiological statistics.
The incidence values that were reported ranged from 1:100,000 to 1:120,000.
Heart-hand syndrome type 3 is very rare and has been described only in three members of a Spanish family. It is also known as Heart-hand syndrome, Spanish type.
A large number of human gene defects can cause ectrodactyly. The most common mode of inheritance is autosomal dominant with reduced penetrance, while autosomal recessive and X-linked forms occur more rarely. Ectrodactyly can also be caused by a duplication on 10q24. Detailed studies of a number of mouse models for ectrodactyly have also revealed that a failure to maintain median apical ectodermal ridge (AER) signalling can be the main pathogenic mechanism in triggering this abnormality.
A number of factors make the identification of the genetic defects underlying human ectrodactyly a complicated process: the limited number of families linked to each split hand/foot malformation (SHFM) locus, the large number of morphogens involved in limb development, the complex interactions between these morphogens, the involvement of modifier genes, and the presumed involvement of multiple gene or long-range regulatory elements in some cases of ectrodactyly. In the clinical setting these genetic characteristics can become problematic and making predictions of carrier status and severity of the disease impossible to predict.
In 2011, a novel mutation in DLX5 was found to be involved in SHFM.
Ectrodactyly is frequently seen with other congenital anomalies. Syndromes in which ectrodactyly is associated with other abnormalities can occur when two or more genes are affected by a chromosomal rearrangement. Disorders associated with ectrodactyly include Ectrodactyly-Ectodermal Dysplasia-Clefting (EEC) syndrome, which is closely correlated to the ADULT syndrome and Limb-mammary (LMS) syndrome, Ectrodactyly-Cleft Palate (ECP) syndrome, Ectrodactyly-Ectodermal Dysplasia-Macular Dystrophy syndrome, Ectrodactyly-Fibular Aplasia/Hypoplasia (EFA) syndrome, and Ectrodactyly-Polydactyly. More than 50 syndromes and associations involving ectrodactyly are distinguished in the London Dysmorphology Database.
Acrocephalosyndactylia (or acrocephalosyndactyly) is the common presentation of craniosynostosis and syndactyly.
Ectrodactyly can be caused by various changes to 7q. When 7q is altered by a deletion or a translocation ectrodactyly can sometimes be associated with hearing loss. Ectrodactyly, or Split hand/split foot malformation (SHFM) type 1 is the only form of split hand/ malformation associated with sensorineural hearing loss.
The cause of Poland syndrome is unknown. However, an interruption of the embryonic blood supply to the arteries that lie under the collarbone (subclavian arteries) at about the 46th day of embryonic development is the prevailing theory.
The subclavian arteries normally supply blood to embryonic tissues that give rise to the chest wall and hand. Variations in the site and extent of the disruption may explain the range of signs and symptoms that occur in Poland syndrome. Abnormality of an embryonic structure called the apical ectodermal ridge, which helps direct early limb development, may also be involved in this disorder.