Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Craniopagus twins are conjoined twins that are fused at the cranium. This condition occurs in about 10–20 babies in every million births in the United States. Among this small group, cephalic conjoining, or craniopagus twinning, represents the rarest of congenital abnormalities, accounting for 2–6% of all conjoined twins. Additionally, conjoined twins are genetically identical and always share the same sex. The union in craniopagus twins may occur on any portion of the Calvary, but does not include either the face or the foramen magnum. The thorax and abdomen are separate and each twin has its own umbilicus and umbilical cord. The union may involve the entire diameter of the head or only a small portion. This suggests that although there are many different kinds of vulnerabilities already known in the scientific community, there are an infinite number of variations that can occur. Most of these variations are based on the rotation of one twin's skull to the other and the different phenotype sub-groups of craniopagus twins are based on all these rotational conformations. Each of these factors (rotation, spot of union) affects the development of the brain, the vascular system within the brain and overall wellness of life both of the twins have outside the womb. Relatively few craniopagus twins survive the perinatal period – approximately 40% of conjoined twins are stillborn and an additional 33% die within the immediate perinatal period, usually from organ abnormalities and failure. However 25% of craniopagus twins survive and can be considered for a surgical separation and several attempts occur yearly worldwide. In the last-half century, many advances in medicine including brain imaging, neuro-anesthesia and neurosurgical techniques have proven that a successful outcome is possible following separation of total craniopagus twins.
Only ten cases of craniopagus parasiticus have been reported in the medical research literature. Of those cases, only three have survived birth. The first case on record is that of Everard Home's Two-Headed Boy of Bengal, whose skull is preserved at the Hunterian Museum at the Royal Society of Surgeons.
In the past, the use of terminology when describing parasitic twins has been somewhat inconsistent. By definition, a parasitic twin is joined to another twin in a certain anatomical location or position on the developed twin's body. The underdeveloped twin is termed the parasite, and the developed twin is termed the autosite. The autosite can have some abnormalities, as well. For the most part, however, it has developed enough that it can live on its own.
The exact nature of how conjoined twins develop inutero remains unclear. Embryologists have traditionally attributed identical twinning as "splitting or fission" of either the inner cell mass of pleuripotential cells or early embryonic disc at 13–14 days of gestation just before the primitive streak. Some theorists suggested that conjoined twins develop as a result of the failed fusion of a single fertilized ovum. However a new hypothesis suggests that cranial fusion occurs between two separate embryos prior to the end of the 4th week of gestation. This is able to happen because the cranial neuropore is still open which is responsible for the ultimate fusion and formation of the brain stem and central nervous system. Furthermore, this secondary fusion of embryonic discs could implicate that intact skin will not fuse to other intact skin, including the ectoderm of the embryo. This means that two embryonic discs could only unite in locations where the ectoderm is absent. Moreover, the fusion occurs from neural folds of two separate, dorsally oriented embryonic discs, and the union can occur only after the ectoderm is disrupted to allow the neural and surface ectodermal layers to separate from each other.
The union in craniopagus twins may happen at any portion of the calvarium. The juncture can involve either the entire diameter of the head or any portion of the head and can be positioned at a multitude of rotational angles. In fact, craniopagus twins are rarely found in a symmetrical union. Apart from this, the vertebral axes may have a straight line. Despite this, the angle of the vertebrae is the ultimate dictator in how the individuals heads actually face. The majority of twins face either the same way or the exact opposite direction.
Many reviews suggest a practical four-category system that breaks down the craniopagus twins on the basis of vertical or angular configuration or on the basis if there were shared dural venous sinuses. This scheme was applied to 64 cases and has adequately described sets of twins for over the last 86 years.
Following methods could serve as prevention: carrying the infant and tummy time.
Slight plagiocephaly is routinely diagnosed at birth and may be the result of a restrictive intrauterine environment giving a "diamond" shaped head when seen from above. If there is premature union of skull bones, this is more properly called craniosynostosis.
The incidence of plagiocephaly has increased dramatically since the advent of anti-Sudden Infant Death Syndrome recommendations for parents to keep their babies on their backs.
Data also suggest that the rates of plagiocephaly is higher among twins and multiple births, premature babies, babies who were positioned in the breech position or back-to-back, as well as babies born after a prolonged labour.
A parasitic twin (also known as an asymmetrical or unequal conjoined twin) is the result of the processes that also produce vanishing twins and conjoined twins, and may represent a continuum between the two. Parasitic twins occur when a twin embryo begins developing in utero, but the pair does not fully separate, and one embryo maintains dominant development at the expense of its twin. Unlike conjoined twins, one ceases development during gestation and is vestigial to a mostly fully formed, otherwise healthy individual twin. The undeveloped twin is defined as parasitic, rather than conjoined, because it is incompletely formed or wholly dependent on the body functions of the complete fetus.
The independent twin is called the autosite.
Embryo splitting in which zygote divide asexually,
to produce identical children, is blocked by mitosis inhibitor.
"'Conjoined twins" are identical twins joined in utero. An extremely rare phenomenon, the occurrence is estimated to range from 1 in 49,000 births to 1 in 189,000 births, with a somewhat higher incidence in Southeast Asia and Africa. Approximately half are stillborn, and an additional one-third die within 24 hours. Most live births are female, with a ratio of 3:1.
Two contradicting theories exist to explain the origins of conjoined twins. The more generally accepted theory is "fission", in which the fertilized egg splits partially. The other theory, no longer believed to be the basis of conjoined twinning, is fusion, in which a fertilized egg completely separates, but stem cells (which search for similar cells) find like-stem cells on the other twin and fuse the twins together. Conjoined twins share a single common chorion, placenta, and amniotic sac, although these characteristics are not exclusive to conjoined twins as there are some monozygotic but non-conjoined twins who also share these structures in utero.
The most famous pair of conjoined twins was Chang and Eng Bunker (Thai: อิน-จัน, In-Chan) (1811–1874), Thai brothers born in Siam, now Thailand. They traveled with P.T. Barnum's circus for many years and were labeled as the Siamese twins. Chang and Eng were joined at the torso by a band of flesh, cartilage, and their fused livers. In modern times, they could have been easily separated. Due to the brothers' fame and the rarity of the condition, the term "Siamese twins" came to be used as a synonym for conjoined twins.
There is no known definitive single mechanism that causes colpocephaly. However, researchers believe there are many possible causes of colpocephaly. It is a common symptom of other neurological disorders in newborns, can be caused as a result of shunt treatment of hydrocephalus, developmental disorders in premature infants, due to intrauterine disturbances during pregnancy, genetic disorders, underdevelopment or lack of white matter in the cerebrum, and exposure of the mother and the developing fetus to medications, infections, radiation, or toxic substances. Also, it is usually more common in premature infants than in full-term infants, especially in babies born with hypoxia or lung immaturity.
Some of the central nervous system disorders which are associated with colpocephaly are as follows:
- polymicrogyria
- Periventricular leukomalacia (PVL)
- intraventricular hemorrhage
- Hydrocephalus
- schizencephaly
- microgyria
- microcephaly
- Pierre-Robin syndrome
- Neurofibromatosis
Often colpocephaly occurs as a result of hydrocephalus. Hydrocephalus is the accumulation of cerebrospinal fluid (CSF) in the ventricles or in the subarachnoid space over the brain. The increased pressure due to this condition dilates occipital horns causing colpocephaly.
The most generally accepted theory is that of neuronal migration disorders occurring during the second to fifth months of fetal life. Neuronal migration disorders are caused by abnormal migration, proliferation, and organization of neurons during early brain development. During the seventh week of gestation, neurons start proliferating in the germinal matrix which is located in the subependymal layer of the walls of the lateral ventricles. During the eighth week of gestation, the neurons then start migrating from the germinal zone to cortex along specialized radial glial fibers. Next, neurons organize themselves into layers and form synaptic contacts with other neurons present in the cortex. Under normal conditions, the neurons forming a germinal layer around ventricles migrate to the surface of the brain and form the cerebral cortex and basal ganglia. If this process is abnormal or disturbed it could result in the enlargement of the occipital horns of the lateral ventricles. Common prenatal disturbances that have been shown to disturb the neuronal migration process include the following:
- continuation of oral contraceptives
- exposure to alcohol
- intrauterine malnutrition
- intrauterine infections such as toxoplasmosis
- maternal drug ingestion during early pregnancy such as corticosteroids, salbutamol, and theophylline
Researchers also believe that these factors can cause destruction of neural elements that have previously been normally formed.
It is suggested that the underdevelopment or lack of white matter in the developing fetus could be a cause of colpocephaly. The partial or complete absence of white matter, also known as agenesis of the corpus callosum results in anatomic malformations that can lead to colpocephaly. This starts to occur around the middle of the second month to the fifth month of pregnancy. The lateral ventricles are formed as large cavities of the telencephalic vesicle. The size of the ventricles are decreased in normal development after the formation of the Foramen of Magendie, which decompresses the ventricular cavities. Myelination of the ventricular walls and association fibers of the corpus callosum and the calcarine fissure helps shape the occipital horns. In cases where this developmental process is interrupted, occipital horns are disproportionately enlarged.
Colpocephaly has been associated with chromosomal abnormalities such as trisomy 8 mosaic and trisomy 9 mosaic. A few reports of genetically transmitted colpocephaly are also found in literature. Some of these are of two siblings, monozygotic twins, and non-identical twins. The authors suggest a genetic origin with an autosomal or X-linked recessive inheritance rather than resulting from early prenatal disturbances.
Sirenomelia, alternatively known as Mermaid syndrome, is a rare congenital deformity in which the legs are fused together, giving them the appearance of a mermaid's tail as the nickname suggests.
This condition is found in approximately one out of every 100,000 live births (about as rare as conjoined twins) and is usually fatal within a day or two of birth because of complications associated with abnormal kidney and urinary bladder development and function. More than half the cases of sirenomelia result in stillbirth and this condition is 100 times more likely to occur in identical twins than in single births or fraternal twins. It results from a failure of normal vascular supply from the lower aorta in utero. Maternal diabetes has been associated with caudal regression syndrome and sirenomelia, although a few sources question this association.
VACTERL-H is an expanded form of the VACTERL association that concludes that this diagnosis is a less severe form of sirenomelia. The disorder was formerly thought to be an extreme case of caudal regression syndrome; however, it was reclassified to be considered a separate condition.
Only a few individuals who did not have fatal kidney and bladder complications are known to have survived beyond birth with this condition.
For every 200,000 live births, conjoined twins are born. Conjoined twins are identical and of the same sex one hundred percent of the time and are more common in females than in males. For surgical separations the survival rate of at least one twin surviving is approximately 75%.
A vanishing twin, also known as fetal resorption, is a fetus in a multi-gestation pregnancy which dies in utero and is then partially or completely reabsorbed. In some instances, the dead twin will be compressed into a flattened, parchment-like state known as "fetus papyraceus".
Vanishing twins occur in up to one out of every eight multifetus pregnancies and may not even be known in most cases. "High resorption rates, which cannot be explained on the basis of the expected abortion rate...suggest intense fetal competition for space, nutrition, or other factors during early gestation, with frequent loss or resorption of the other twin(s)."
In pregnancies achieved by IVF, "it frequently happens that more than one amniotic sac can be seen in early pregnancy, whereas a few weeks later there is only one to be seen and the other has 'vanished'."
Two-headed people and animals, though rare, have long been known to exist and documented.
Supernumerary body parts are most commonly a congenital disorder involving the growth of an additional part of the body and a deviation from the body plan. Body parts may be easily visible or hidden away, such as internal organs.
Many additional body parts form by the same process as conjoined twins: the zygote begins to split but fails to completely separate. This condition may also be a symptom of repeated occurrences of continuous inbreeding in a genetic line.
Retrospective data of over 182,000 births, with the statistical power to determine even mild associations, suggest that a single or multiple nuchal cords at the time of delivery is not associated with adverse perinatal outcomes, is associated with higher birthweights and fewer caesarean sections in births. Although some studies have found that a tight nuchal cord is associated with short term morbidity, it is unclear whether such outcomes are actually a result of the presence of the nuchal cord itself, or as a result of clamping and cutting the cord
Management of a presenting nuchal cord should be tailored to prevent umbilical cord compression whenever possible. Techniques to preserve an intact nuchal cord depend on how tightly the cord is wrapped around the infant’s neck. If the cord is loose, it can easily be slipped over the infant’s head. The infant can be delivered normally and placed on maternal abdomen as desired. If the cord is too tight to go over the infant’s head, the provider may be able to slip it over the infant’s shoulders and deliver the body through the cord. The cord can then be unwrapped from around the baby after birth. Finally, if the cord is too tight to slip back over the shoulders, one may use the somersault maneuver to allow the body to be delivered. The birth attendant may also choose to clamp and cut the umbilical cord to allow for vaginal delivery if other methods of nuchal cord management are not feasible.
In humans, as in other animals, partial twinning can result in formation of two heads supported by a single torso. Two ways this can happen are dicephalus parapagus, where there are two heads side by side, and craniopagus parasiticus, where the heads are joined directly.
Colpocephaly is usually non-fatal. There has been relatively little research conducted to improve treatments for colpocephaly, and there is no known definitive treatment of colpocephaly yet. Specific treatment depends on associated symptoms and the degree of dysfunction. Anticonvulsant medications can be given to prevent seizure complications, and physical therapy is used to prevent contractures (shrinkage or shortening of muscles) in patients that have limited mobility. Patients can also undergo surgeries for stiff joints to improve motor function. The prognosis for individuals with colpocephaly depends on the severity of the associated conditions and the degree of abnormal brain development.
A rare case of colpocephaly is described in literature which is associated with macrocephaly instead of microcephaly. Increased intracranial pressure was also found in the condition. Similar symptoms (absence of corpus callosum and increased head circumference) were noted as in the case of colpocephaly that is associated with microcephaly. A bi-ventricular peritoneal shunt was performed, which greatly improved the symptoms of the condition. Ventriculo-peritoneal shunts are used to drain the fluid into the peritoneal cavity.
Krista and Tatiana Hogan (born October 25, 2006) are Canadians who are conjoined craniopagus twins. They are joined at the head (the top, back, and sides). They were born in Vancouver, British Columbia and are the only unseparated ones of that type currently alive in Canada. They live with their mother, Felicia Simms, in Vernon, British Columbia and often travel to Vancouver for care at BC Children's Hospital and Sunny Hill Health Centre for Children.
Twin reversed arterial perfusion sequence—also called TRAP sequence, TRAPS, or acardiac twinning—is a rare complication of monochorionic twin pregnancies. It is a severe variant of twin-to-twin transfusion syndrome (TTTS). The twins' blood systems are connected instead of independent. One twin, called the "acardiac twin" or "TRAP fetus", is severely malformed. The heart is missing or deformed, hence the name acardiac, as are the upper structures of the body . The legs may be partially present or missing, and internal structures of the torso are often poorly formed. The other twin is usually normal in appearance. The normal twin, called the "pump twin", drives blood through both fetuses. It is called "reversed arterial perfusion" because in the acardiac twin the blood flows in a reversed direction.
TRAP sequence occurs in 1% of monochorionic twin pregnancies and in 1 in 35,000 pregnancies overall.
Maria and Teresa Tapia (born April 8, 2010) were conjoined twins born in the Dominican Republic. The twins were joined by their lower chest and abdomen and were therefore classified as omphalopagus sharing a liver, pancreas, and a small portion of their small intestine. On November 7, 2011, the twins underwent a successful separation surgery at the Children's Hospital of Richmond in Virginia.
Anastasia and Tatiana Dogaru
born August 29, 2004) are craniopagus conjoined twins. They were scheduled to begin the first of several surgeries to separate them at Rainbow Babies and Children's Medical Center in Cleveland, Ohio. However, in August 2007 the surgery was called off as too dangerous.
The twins were born in Rome, Italy to Romanian parents, Alin Dogaru, a Byzantine Catholic priest, and Claudia Dogaru, a nurse. Their mother heard about the successful separation of Egyptian-born twins who were also joined at the head and hoped her children could also be successfully separated. The Dogaru family — who also have an older daughter, Maria, and younger son Theodor — were brought to north Texas by the World Craniofacial Foundation to have Anastasia and Tatiana evaluated for possible separation.
The girls are currently developing normally for their age and speak both Romanian and English. They get around with Anastasia leading the way and Tatiana following. The top of Tatiana's head is attached to the back of Anastasia's. Anastasia, whose kidneys don't function, relies on her sister's kidneys, and Tatiana on her sister's circulatory system. The girls also share blood flow to the back of the brain and some brain matter. Doctors estimated the twins had only a 50 percent chance of surviving the surgery. There were also risks of complications, such as brain damage, but the girls also risk early death if they remain conjoined. Their parents believed separation would give them their best chance at living a normal life.
In May 2007, doctors used a catheter to insert wire coils into the veins of the two girls, successfully redirecting their blood flow. It was the first time the procedure was attempted in conjoined twins. Doctors pushed back the first of the planned separation surgeries to June 2007 while studying the complex circulatory system of the twins, but, in August of that year, decided it was too risky.
Genetic counseling for VWS involves discussion of disease transmission in the autosomal dominant manner and possibilities for penetrance and expression in offspring. Autosomal dominance means affected parents have a 50% chance of passing on their mutated "IRF6" allele to a their child. Furthermore, if a cleft patient has lip pits, he or she has a ten times greater risk of having a child with cleft lip with or without cleft palate than a cleft patient who does not have lip pits. Types of clefting between parents and affected children are significantly associated; however, different types of clefts may occur horizontally and vertically within the same pedigree. In cases where clefting is the only symptom, a complete family history must be taken to ensure the patient does not have non-syndromic clefting.
Not much research has been done on the epidemiology of congenital trigger thumbs. There are a few reports on the incidence in their respective studies. The most recent data comes from a Japanese study by Kukichi and Ogino where they found an incidence 3.3 trigger thumbs per 1,000 live births in 1 year old children.