Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Human-to-human transmission of diphtheria typically occurs through the air when an infected individual coughs or sneezes. Breathing in particles released from the infected individual leads to infection Contact with any lesions on the skin can also lead to transmission of diphtheria, but this is uncommon. Indirect infections can occur, as well. If an infected individual touches a surface or object, the bacteria can be left behind and remain viable. Also, some evidence indicates diphtheria has the potential to be zoonotic, but this has yet to be confirmed. "Corynebacterium ulcerans" has been found in some animals, which would suggest zoonotic potential
Diphtheria is fatal in between 5% and 10% of cases. In children under five years and adults over 40 years, the fatality rate may be as much as 20%. In 2013, it resulted in 3,300 deaths, down from 8,000 deaths in 1990.
The number of cases has changed over the course of the last 2 decades, specifically throughout developing countries. Better standards of living, mass immunization, improved diagnosis, prompt treatment, and more effective health care have led to the decrease in cases worldwide. However, although outbreaks are rare, they still occur worldwide, especially in developed nations such as Germany among unvaccinated children, and Canada. After the breakup of the former Soviet Union in the early 1990s, vaccination rates in its constituent countries fell so low that an explosion of diphtheria cases occurred. In 1991, 2,000 cases of diphtheria occurred in the USSR. Because of this outbreak, since 1992, many of the cases reported throughout other parts of Europe have been linked to the NIS epidemic. Belgium (3/3) and Finland (10/10) come in first, stating that 100% of cases are connected to this epidemic. However, locations such as Poland and Germany have had a larger number of people diagnosed with Diphtheria overall, but claim that a smaller percentage have been linked directly to the NIS. By 1998 as many as 200,000 cases in the Commonwealth of Independent States were reported, with 5,000 deaths.
Many cases of croup have been prevented by immunization for influenza and diphtheria. At one time, croup referred to a diphtherial disease, but with vaccination, diphtheria is now rare in the developed world.
Croup affects about 15% of children, and usually presents between the ages of 6 months and 5–6 years. It accounts for about 5% of hospital admissions in this population. In rare cases, it may occur in children as young as 3 months and as old as 15 years. Males are affected 50% more frequently than are females, and there is an increased prevalence in autumn.
In 2004, an estimated 350 million individuals were infected worldwide. National and regional prevalences range from over 10% in Asia to under 0.5% in the United States and Northern Europe.
Routes of infection include vertical transmission (such as through childbirth), early life horizontal transmission (bites, lesions, and sanitary habits), and adult horizontal transmission (sexual contact, intravenous drug use).
The primary method of transmission reflects the prevalence of chronic HBV infection in a given area. In low prevalence areas such as the continental United States and Western Europe, injection drug abuse and unprotected sex are the primary methods, although other factors may also be important. In moderate prevalence areas, which include Eastern Europe, Russia, and Japan, where 2–7% of the population is chronically infected, the disease is predominantly spread among children. In high-prevalence areas such as China and South East Asia, transmission during childbirth is most common, although in other areas of high endemicity such as Africa, transmission during childhood is a significant factor. The prevalence of chronic HBV infection in areas of high endemicity is at least 8% with 10–15% prevalence in Africa/Far East. As of 2010, China has 120 million infected people, followed by India and Indonesia with 40 million and 12 million, respectively. According to World Health Organization (WHO), an estimated 600,000 people die every year related to the infection.
In the United States about 19,000 new cases occurred in 2011 down nearly 90% from 1990.
virus DNA persists in the body after infection, and in some people the disease recurs. Although rare, reactivation is seen most often following alcohol or drug use, or in people with impaired immunity. HBV goes through cycles of replication and non-replication. Approximately 50% of overt carriers experience acute reactivation. Males with baseline ALT of 200 UL/L are three times more likely to develop a reactivation than people with lower levels. Although reactivation can occur spontaneously, people who undergo chemotherapy have a higher risk. Immunosuppressive drugs favor increased HBV replication while inhibiting cytotoxic T cell function in the liver. The risk of reactivation varies depending on the serological profile; those with detectable HBsAg in their blood are at the greatest risk, but those with only antibodies to the core antigen are also at risk. The presence of antibodies to the surface antigen, which are considered to be a marker of immunity, does not preclude reactivation. Treatment with prophylactic antiviral drugs can prevent the serious morbidity associated with HBV disease reactivation.
Only 8% of infected horses have this form of pigeon fever, however, it has a 30-40% fatality rate. Organs that are commonly affected are the liver, spleen, and lungs. For a successful recovery, long-term antimicrobial therapy is essential.
Modern vaccination programmes aim not only to provide a high level of protection from clinical disease for the dam, but, crucially, to protect against viraemia and prevent the production of PIs. While the immune mechanisms involved are the same, the level of immune protection required for foetal protection is much higher than for prevention of clinical disease.
While challenge studies indicate that killed, as well as live, vaccines prevent foetal infection under experimental conditions, the efficacy of vaccines under field conditions has been questioned. The birth of PI calves into vaccinated herds suggests that killed vaccines do not stand up to the challenge presented by the viral load excreted by a PI in the field.
The disease can occur in horses of any age, breed or gender. In the US, it occurs throughout the country and at any time of year. The disease was traditionally thought to occur mainly in dry, arid regions, but from at least 2005, its range has been increasing into areas where it was not previously seen, such as the Midwestern US, and Western Canada. Environmental risk factors include over 7 days of a weekly average land surface temperatures above 35 °C, and drier soils; these factors were implicated in an outbreak in Kansas in 2012.
The mainstay of eradication is the identification and removal of persistently infected animals. Re-infection is then prevented by vaccination and high levels of biosecurity, supported by continuing surveillance. PIs act as viral reservoirs and are the principal source of viral infection but transiently infected animals and contaminated fomites also play a significant role in transmission.
Leading the way in BVD eradication, almost 20 years ago, were the Scandinavian countries. Despite different conditions at the start of the projects in terms of legal support, and regardless of initial prevalence of herds with PI animals, it took all countries approximately 10 years to reach their final stages.
Once proven that BVD eradication could be achieved in a cost efficient way, a number of regional programmes followed in Europe, some of which have developed into national schemes.
Vaccination is an essential part of both control and eradication. While BVD virus is still circulating within the national herd, breeding cattle are at risk of producing PI neonates and the economic consequences of BVD are still relevant. Once eradication has been achieved, unvaccinated animals will represent a naïve and susceptible herd. Infection from imported animals or contaminated fomites brought into the farm, or via transiently infected in-contacts will have devastating consequences.
The most common cause is viral infection and includes adenovirus, rhinovirus, influenza, coronavirus, and respiratory syncytial virus. It can also be caused by Epstein-Barr virus, herpes simplex virus, cytomegalovirus, or HIV. The second most common cause is bacterial infection of which the predominant is Group A β-hemolytic streptococcus (GABHS), which causes strep throat. Less common bacterial causes include: "Staphylococcus aureus" (including methicillin resistant Staphylococcus aureus or MRSA ),"Streptococcus pneumoniae", "Mycoplasma pneumoniae", "Chlamydia pneumoniae", "Bordetella pertussis", "Fusobacterium" sp., "Corynebacterium diphtheriae", "Treponema pallidum", and "Neisseria gonorrhoeae".
Anaerobic bacteria have been implicated in tonsillitis and a possible role in the acute inflammatory process is supported by several clinical and scientific observations.
Under normal circumstances, as viruses and bacteria enter the body through the nose and mouth, they are filtered in the tonsils. Within the tonsils, white blood cells of the immune system destroy the viruses or bacteria by producing inflammatory cytokines like phospholipase A2, which also lead to fever. The infection may also be present in the throat and surrounding areas, causing inflammation of the pharynx.
Sometimes, tonsillitis is caused by an infection of spirochaeta and treponema, in this case called Vincent's angina or Plaut-Vincent angina.
Pharyngitis may also be caused by mechanical, chemical or thermal irritation, for example cold air or acid reflux. Some medications may produce pharyngitis such as pramipexole and antipsychotics.
Some cases of pharyngitis are caused by fungal infection such as Candida albicans causing oral thrush.
Since the advent of penicillin in the 1940s, a major preoccupation in the treatment of streptococcal tonsillitis has been the prevention of rheumatic fever, and its major effects on the nervous system (Sydenham's chorea) and heart. Recent evidence would suggest that the rheumatogenic strains of group A beta hemolytic strep have become markedly less prevalent and are now only present in small pockets such as in Salt Lake City, USA. This brings into question the rationale for treating tonsillitis as a means of preventing rheumatic fever.
Complications may rarely include dehydration and kidney failure due to difficulty swallowing, blocked airways due to inflammation, and pharyngitis due to the spread of infection.
An abscess may develop lateral to the tonsil during an infection, typically several days after the onset of tonsillitis. This is termed a peritonsillar abscess (or quinsy).
Rarely, the infection may spread beyond the tonsil resulting in inflammation and infection of the internal jugular vein giving rise to a spreading septicaemia infection (Lemierre's syndrome).
In chronic/recurrent cases (generally defined as seven episodes of tonsillitis in the preceding year, five episodes in each of the preceding two years or three episodes in each of the preceding three years), or in acute cases where the palatine tonsils become so swollen that swallowing is impaired, a tonsillectomy can be performed to remove the tonsils. Patients whose tonsils have been removed are still protected from infection by the rest of their immune system.
In strep throat, very rarely diseases like rheumatic fever or glomerulonephritis can occur. These complications are extremely rare in developed nations but remain a significant problem in poorer nations. Tonsillitis associated with strep throat, if untreated, is hypothesized to lead to pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS).
HIV-infected children less than 12 years of age also develop disseminated MAC. Some age adjustment is necessary when clinicians interpret CD4+ T-lymphocyte counts in children less than 2 years of age. Diagnosis, therapy, and prophylaxis should follow recommendations similar to those for adolescents and adults.
Although no specific treatment for acute infection with SuHV1 is available, vaccination can alleviate clinical signs in pigs of certain ages. Typically, mass vaccination of all pigs on the farm with a modified live virus vaccine is recommended. Intranasal vaccination of sows and neonatal piglets one to seven days old, followed by intramuscular (IM) vaccination of all other swine on the premises, helps reduce viral shedding and improve survival. The modified live virus replicates at the site of injection and in regional lymph nodes. Vaccine virus is shed in such low levels, mucous transmission to other animals is minimal. In gene-deleted vaccines, the thymidine kinase gene has also been deleted; thus, the virus cannot infect and replicate in neurons. Breeding herds are recommended to be vaccinated quarterly, and finisher pigs should be vaccinated after levels of maternal antibody decrease. Regular vaccination results in excellent control of the disease. Concurrent antibiotic therapy via feed and IM injection is recommended for controlling secondary bacterial pathogens.
Fever and sickness behavior and other signs of infection are often taken to be due to them. However, they are evolved physiological and behavioral responses of the host to clear itself of the infection. Instead of incurring the costs of deploying these evolved responses to infections, the body opts to tolerate an infection as an alternative to seeking to control or remove the infecting pathogen.
Subclinical infections are important since they allow infections to spread from a reserve of carriers. They also can cause clinical problems unrelated to the direct issue of infection. For example, in the case of urinary tract infections in women, this infection may cause preterm delivery if the person becomes pregnant without proper treatment.
An individual may only develop signs of an infection after a period of subclinical infection, a duration that is called the incubation period. This is the case, for example, for subclinical sexually transmitted diseases such as AIDS and genital warts. Individuals with such subclinical infections, and those that never develop overt illness, creates a reserve of individuals that can transmit an infectious agent to infect other individuals. Because such cases of infections do not come to clinical attention, health statistics can often fail to measure the true prevalence of an infection in a population, and this prevents the accurate modeling of its infectious transmission.
Aujeszky's disease, usually called pseudorabies in the United States, is a viral disease in swine that has been endemic in most parts of the world. It is caused by "Suid herpesvirus 1" (SuHV1). Aujeszky's disease is considered to be the most economically important viral disease of swine in areas where hog cholera has been eradicated. Other mammals, such as humans, cattle, sheep, goats, cats, dogs, and raccoons, are also susceptible. The disease is usually fatal in these animal species bar humans.
The term "pseudorabies" is found inappropriate by many people, as SuHV1 is a herpesvirus and not related to the rabies virus.
Research on SuHV1 in pigs has pioneered animal disease control with genetically modified vaccines. SuHV1 is now used in model studies of basic processes during lytic herpesvirus infection, and for unravelling molecular mechanisms of herpesvirus neurotropism.
This disease is most common among the elderly, infants, and children. People with immune deficiency, diabetes, alcoholism, skin ulceration, fungal infections, and impaired lymphatic drainage (e.g., after mastectomy, pelvic surgery, bypass grafting) are also at increased risk.
Congential rubella is still a risk with higher risk among immigrant women from countries without adequate vaccination programs.
A study conducted on 452 patients revealed that the genotype responsible for higher IL-10 expression makes HIV infected people more susceptible to tuberculosis infection. Another study on HIV-TB co-infected patients also concluded that higher level of IL-10 and IL-22 makes TB patient more susceptible to Immune reconstitution inflammatory syndrome (IRIS). It is also seen that HIV co-infection with tuberculosis also reduces concentration of immunopathogenic matrix metalloproteinase (MMPs) leading to reduced inflammatory immunopathology.
Most cases of erysipelas are due to "Streptococcus pyogenes" (also known as beta-hemolytic group A streptococci), although non-group A streptococci can also be the causative agent. Beta-hemolytic, non-group A streptococci include "Streptococcus agalactiae", also known as group B strep or GBS. Historically, the face was most affected; today, the legs are affected most often. The rash is due to an exotoxin, not the "Streptococcus" bacteria, and is found in areas where no symptoms are present; e.g., the infection may be in the nasopharynx, but the rash is found usually on the upper dermis and superficial lymphatics.
Erysipelas infections can enter the skin through minor trauma, insect bites, dog bites, eczema, athlete's foot, surgical incisions and ulcers and often originate from streptococci bacteria in the subject's own nasal passages. Infection sets in after a small scratch or abrasion spreads, resulting in toxaemia.
Erysipelas does not affect subcutaneous tissue. It does not release pus, only serum or serous fluid. Subcutaneous edema may lead the physician to misdiagnose it as cellulitis, but the style of the rash is much more well circumscribed and sharply marginated than the rash of cellulitis.
Zika fever is caused by a virus that is acquired by the mother and then transmitted to the infant in utero. The CDC is concerned with the potential that this viral infection may cause microcephaly in newborns.
Most healthy people working with infants and children face no special risk from CMV infection. However, for women of child-bearing age who previously have not been infected with CMV, there is a potential risk to the developing unborn child (the risk is described above in the Pregnancy section). Contact with children who are in day care, where CMV infection is commonly transmitted among young children (particularly toddlers), may be a source of exposure to CMV. Since CMV is transmitted through contact with infected body fluids, including urine and saliva, child care providers (meaning day care workers, special education teachers, as well as mothers) should be educated about the risks of CMV infection and the precautions they can take. Day care workers appear to be at a greater risk than hospital and other health care providers, and this may be due in part to the increased emphasis on personal hygiene in the health care setting.
Recommendations for individuals providing care for infants and children:
- Employees should be educated concerning CMV, its transmission, and hygienic practices, such as handwashing, which minimize the risk of infection.
- Susceptible nonpregnant women working with infants and children should not routinely be transferred to other work situations.
- Pregnant women working with infants and children should be informed of the risk of acquiring CMV infection and the possible effects on the unborn child.
- Routine laboratory testing for CMV antibody in female workers is not specifically recommended due to its high occurrence, but can be performed to determine their immune status.