Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A recent study estimated that from 2002-2003 there were 27,152 injuries in the United States related to the wearing of eyeglasses. The same study concluded that sports-related injuries due to eyeglasses wear were more common in those under the age of 18 and that fall-related injuries due to eyeglasses wear were more common in those aged 65 or more. Although eyeglasses-related injuries do occur, prescription eyeglasses and non-prescription sunglasses have been found to "offer measurable protection which results in a lower incidence of severe eye injuries to those wearing [them]".
In India study conducted by Dr.Shukla, injuries are found more in n males(81%).This is true for both rural and urban population but in 0-10 age group, the difference between males and females is less.Females account for 28% injuries in this age group.However, in sedentary workers, farmers, labourers and industrial workers the male % is as high as 95%.Chemical injuries are the comments cause of bilateral injuries in the eye .
Given that episodes tend to occur on awakening and managed by use of good 'wetting agents', approaches to be taken to help prevent episodes include:
- Environmental:
- ensuring that the air is humidified rather than dry, not overheated and without excessive airflow over the face. Also avoiding irritants such as cigarette smoke.
- use of protective glasses especially when gardening or playing with children.
- General personal measures:
- maintaining general hydration levels with adequate fluid intake.
- not sleeping-in late as the cornea tends to dry out the longer the eyelids are closed.
- Pre-bed routine:
- routine use of long-lasting eye ointments applied before going to bed.
- occasional use of the anti-inflammatory eyedrop FML (prescribed by an ophthalmologist or optometrist) before going to bed if the affected eye feels inflamed, dry or gritty
- use of a hyperosmotic (hypertonic) ointment before bed reduces the amount of water in the epithelium, strengthening its structure
- use the pressure patch as mentioned above.
- use surgical tape to keep the eye closed (if Nocturnal Lagophthalmos is a factor)
- Waking options:
- learn to wake with eyes closed and still and keeping artificial tear drops within reach so that they may be squirted under the inner corner of the eyelids if the eyes feel uncomfortable upon waking.
- It has also been suggested that the eyelids should be rubbed gently, or pulled slowly open with your fingers, before trying to open them, or keeping the affected eye closed while "looking" left and right to help spread lubricating tears. If the patient's eyelids feel stuck to the cornea on waking and no intense pain is present, use a fingertip to press firmly on the eyelid to push the eye's natural lubricants onto the affected area. This procedure frees the eyelid from the cornea and prevents tearing of the cornea.
Complications are the exception rather than the rule from simple corneal abrasions. It is important that any foreign body be identified and removed, especially if containing iron as rusting will occur.
Occasionally the healed epithelium may be poorly adherent to the underlying basement membrane in which case it may detach at intervals giving rise to recurrent corneal erosions.
Corneal abrasions are generally a result of trauma to the surface of the eye. Common causes include being poked by a finger, walking into a tree branch, and wearing old contact lenses. A foreign body in the eye may also cause a scratch if the eye is rubbed.
Injuries can also be incurred by "hard" or "soft" contact lenses that have been left in too long. Damage may result when the lenses are removed, rather than when the lens is still in contact with the eye. In addition, if the cornea becomes excessively dry, it may become more brittle and easily damaged by movement across the surface. Soft contact lens wear overnight has been extensively linked to gram negative keratitis (infection of the cornea) particularly by a bacterium known as "Pseudomonas aeruginosa" which forms in the eye's biofilm as a result of extended soft contact lens wear. When a corneal abrasion occurs either from the contact lens itself or another source, the injured cornea is much more susceptible to this type of bacterial infection than a non-contact lens user's would be. This is an optical emergency as it is sight (in some cases eye) threatening. Contact lens wearers who present with corneal abrasions should never be pressure patched because it has been shown through clinical studies that patching creates a warm, moist dark environment that can cause the cornea to become infected or cause an existing infection to be greatly accelerated on its destructive path.
Corneal abrasions are also a common and recurrent feature in people who suffer specific types of corneal dystrophy, such as lattice corneal dystrophy. Lattice dystrophy gets its name from an accumulation of amyloid deposits, or abnormal protein fibers, throughout the middle and anterior stroma. During an eye examination, the doctor sees these deposits in the stroma as clear, comma-shaped overlapping dots and branching filaments, creating a lattice effect. Over time, the lattice lines will grow opaque and involve more of the stroma. They will also gradually converge, giving the cornea a cloudiness that may also reduce vision. In some people, these abnormal protein fibers can accumulate under the cornea's outer layer—the epithelium. This can cause erosion of the epithelium. This condition is known as recurrent epithelial erosion. These erosions: (1) Alter the cornea's normal curvature, resulting in temporary vision problems; and (2) Expose the nerves that line the cornea, causing severe pain. Even the involuntary act of blinking can be painful.
Boehm Syndrome defines erosion events that occur only during periods of sleep.
Multiple complications are known to occur following eye injury: corneal scarring, hyphema, iridodialysis, post-traumatic glaucoma, uveitis cataract, vitreous hemorrhage and retinal detachment. The complications risk is high with retinal tears, penetrating injuries and severe blunt trauma.
CNV causes may be congenital in nature, such as with Aniridia, or acquired. Frequently, inflammatory, infectious, degenerative, traumatic and iatrogenic (from contact lenses) diseases are responsible for acquired CNV.
Some major associated, acquired inflammatory conditions include graft rejection following keratoplasty, graft or host diseases of the new tissue, atopic conjunctivitis, rosacea, ocular pemphigoid, Lyell's syndrome, and Steven's Johnson syndrome.
Infections responsible for CNV range from bacterial (chlamydia, syphilis, pseduomonas), Viral (herpes simplex and herpes zoster viruses), Fungal (candida, asperigillus, fusarium), and parasistic (onchocerca volvolus).
Degenerative diseases such as pterygiums, and terrien's marginal degeneration may be responsible.
Traumas frequently seen with CNV include ulceration, alkali burns, and stem cell deficiency.
One of the most common causes of corneal neovascularization is iastrogenic pathology from contact lens wear. This is especially true of lenses made with older hydrogel materials such as HEMA (2-hydroxyethyl methacrylate) for both daily and extended wear. Such older hydrogel materials have a relatively low oxygen transmissibility so the cornea becomes starved of oxygen leading to the ingress of blood capillaries into the clear cornea to satisfy that oxygen demand. Older estimates have 128,000 to 470,000 cases of lens-induced CNV each year, but this may be decreasing due to the increasing popularity of daily disposable lenses.
The risk for CNV is elevated in certain instances for patients following penetrating keratoplasty without active inflammation or epithelial defects. CNV is more likely to occur in those with active blepharitis, those who receive sutured knots in their host stromas, and those with a large recipient area.
Corneal ulcers are a common human eye disease. They are caused by trauma, particularly with vegetable matter, as well as chemical injury, contact lenses and infections. Other eye conditions can cause corneal ulcers, such as entropion, distichiasis, corneal dystrophy, and keratoconjunctivitis sicca (dry eye).
Many micro-organisms cause infective corneal ulcer. Among them are bacteria, fungi, viruses, protozoa, and chlamydia:
- Bacterial keratitis is caused by "Staphylococcus aureus", "Streptococcus viridans", "Escherichia coli", "Enterococci", "Pseudomonas", "Nocardia", "N. Gonorrhoea" and many other bacteria.
- Fungal keratitis causes deep and severe corneal ulcer. It is caused by "Aspergillus" sp., "Fusarium" sp., "Candida" sp., as also "Rhizopus", "Mucor", and other fungi. The typical feature of fungal keratitis is slow onset and gradual progression, where signs are much more than the symptoms. Small satellite lesions around the ulcer are a common feature of fungal keratitis and hypopyon is usually seen.
- Viral keratitis causes corneal ulceration. It is caused most commonly by Herpes simplex, Herpes zoster and Adenoviruses. Also it can be caused by coronaviruses & many other viruses. Herpes virus cause a dendritic ulcer, which can recur and relapse over the lifetime of an individual.
- Protozoa infection like "Acanthamoeba keratitis" is characterized by severe pain and is associated with contact lens users swimming in pools.
- "Chlamydia trachomatis" can also contribute to development of corneal ulcer.
Superficial ulcers involve a loss of part of the epithelium. Deep ulcers extend into or through the stroma and can result in severe scarring and corneal perforation. Descemetoceles occur when the ulcer extends through the stroma. This type of ulcer is especially dangerous and can rapidly result in corneal perforation, if not treated in time.
The location of the ulcer depends somewhat on the cause. Central ulcers are typically caused by trauma, dry eye, or exposure from facial nerve paralysis or exophthalmos. Entropion, severe dry eye and trichiasis (inturning of eyelashes) may cause ulceration of the peripheral cornea. Immune-mediated eye disease can cause ulcers at the border of the cornea and sclera. These include Rheumatoid arthritis, rosacea, systemic sclerosis which lead to a special type of corneal ulcer called Mooren's ulcer. It has a circumferential crater like depression of the cornea, just inside the limbus, usually with an overhanging edge.
Most cases of recurrent corneal erosion are acquired. There is often a history of recent corneal injury (corneal abrasion or ulcer), but also may be due to corneal dystrophy or corneal disease. In other words, one may suffer from corneal erosions as a result of another disorder, such as map-dot fingerprint dystrophy. Familial corneal erosions occur in dominantly inherited recurrent corneal erosion dystrophy (ERED) in which COL17A1 gene is mutated..
The cornea, an avascular tissue, is among the most densely innervated structures of the human body. Corneal nerves are responsible for maintaining the anatomical and functional integrity of the cornea, conveying tactile, temperature and pain sensations, playing a role in the blink reflex, in wound healing and in the production and secretion of tears.
Most corneal nerve fibres are sensory in origin and are derived from the ophthalmic branch of the trigeminal nerve. Congenital or acquired ocular and systemic diseases can determine a lesion at different levels of the trigeminal nerve, which can lead to a reduction (hypoesthesia) or loss (anesthesia) of sensitivity of the cornea.
The most common causes of loss of corneal sensitivity are viral infections (herpes simplex and herpes zoster ophthalmicus), chemical burns, physical injuries, corneal surgery, neurosurgery, chronic use of topical medications, or chronic use of contact lenses.
Possible causes also include systemic diseases such as diabetes, multiple sclerosis or leprosy.
Other, albeit less frequent, potential causes of the disease are: intracranial space-occupying lesions such as neuroma, meningioma and aneurysms, which may compress the trigeminal nerve and reduce corneal sensitivity.
Conversely, congenital conditions that may lead to this disorder are very rare.
Some of the adverse outcomes associated with intra-operative injuries include:
- Increased length of stay. This is due to ophthalmology consults required, associated infections and treatment.
- Increased costs. This is due to increased length of stay, cost of treating the complications.
- Pain and discomfort for the patient. Corneal abrasions are extremely painful for the patient and the treatment consists of drops and ointments applied in the eye which may cause further discomfort for the patient.
Corneal perforation is an anomaly in the cornea resulting from damage to the corneal surface. A corneal perforation means that the cornea has been penetrated, thus leaving the cornea damaged.
The cornea is a clear part of the eye which controls and focuses the entry of light into the eye. Damage to the cornea due to corneal perforation can cause decreased visual acuity.
Of the many causes, conjunctivitis is the most common. Others include:
"Usually nonurgent"
- blepharitis - a usually chronic inflammation of the eyelids with scaling, sometimes resolving spontaneously
- subconjunctival hemorrhage - a sometimes dramatic, but usually harmless, bleeding underneath the conjunctiva most often from spontaneous rupture of the small, fragile blood vessels, commonly from a cough or sneeze
- inflamed pterygium - a benign, triangular, horizontal growth of the conjunctiva, arising from the inner side, at the level of contact of the upper and lower eyelids, associated with exposure to sunlight, low humidity and dust. It may be more common in occupations such as farming and welding.
- inflamed pinguecula - a yellow-white deposit close to the junction between the cornea and sclera, on the conjunctiva. It is most prevalent in tropical climates with much UV exposure. Although harmless, it can occasionally become inflamed.
- dry eye syndrome - caused by either decreased tear production or increased tear film evaporation which may lead to irritation and redness
- airborne contaminants or irritants
- tiredness
- drug use including cannabis
"Usually urgent"
- acute angle closure glaucoma - implies injury to the optic nerve with the potential for irreversible vision loss which may be permanent unless treated quickly, as a result of increased pressure within the eyeball. Not all forms of glaucoma are acute, and not all are associated with increased 'intra-ocular' pressure.
- injury
- keratitis - a potentially serious inflammation or injury to the cornea (window), often associated with significant pain, light intolerance, and deterioration in vision. Numerous causes include virus infection. Injury from contact lenses can lead to keratitis.
- iritis - together with the ciliary body and choroid, the iris makes up the uvea, part of the middle, pigmented, structures of the eye. Inflammation of this layer (uveitis) requires urgent control and is estimated to be responsible for 10% of blindness in the United States.
- scleritis - a serious inflammatory condition, often painful, that can result in permanent vision loss, and without an identifiable cause in half of those presenting with it. About 30-40% have an underlying systemic autoimmune condition.
- episcleritis - most often a mild, inflammatory disorder of the 'white' of the eye unassociated with eye complications in contrast to scleritis, and responding to topical medications such as anti-inflammatory drops.
- tick borne illnesses like Rocky Mountain spotted fever - the eye is not primarily involved, but the presence of conjunctivitis, along with fever and rash, may help with the diagnosis in appropriate circumstances.
Neurotrophic keratitis (NK) is a degenerative disease of the cornea caused by damage of the trigeminal nerve, which results in impairment of corneal sensitivity, spontaneous corneal epithelium breakdown, poor corneal healing and development of corneal ulceration, melting and perforation.
Neurotrophic keratitis is classified as a rare disease, with an estimated prevalence of less than 5 in 10,000 people in Europe. It has been recorded that on average, 6% of herpetic keratitis cases may evolve to this disease, with a peak of 12.8% of cases of keratitis due to herpes zoster virus.
The diagnosis, and particularly the treatment of neurotrophic keratitis are the most complex and challenging aspects of this disease, as a satisfactory therapeutic approach is not yet available.
Refractory corneal ulcers are superficial ulcers that heal poorly and tend to recur. They are also known as indolent ulcers or Boxer ulcers. They are believed to be caused by a defect in the basement membrane and a lack of hemidesmosomal attachments. They are recognized by undermined epithelium that surrounds the ulcer and easily peels back. Refractory corneal ulcers are most commonly seen in diabetics and often occur in the other eye later. They are similar to Cogan's cystic dystrophy.
The treatment of corneal perforation depends on the location, severity and the cause of damage
- Tissue adhesive can be used to seal small perforation, but this method cannot be used to treat perforations larger than 1 mm.
- Non infected corneal perforation generally heals when a pressure bandage is used.
- For certain types of corneal perforations, lamellar keratoplasty is used as treatment.
Before LASIK surgery, people must be examined for possible risk factors such as keratoconus.
Abnormal corneal topography compromises of keratoconus, pellucid marginal degeneration, or forme fruste keratoconus with an I-S value of 1.4 or more is the most significant risk factor. Low age, low residual stromal bed (RSB) thickness, low preoperative corneal thickness, and high myopia are other important risk factors.
Corneal neovascularization (CNV) is the in-growth of new blood vessels from the pericorneal plexus into avascular corneal tissue as a result of oxygen deprivation. Maintaining avascularity of the corneal stroma is an important aspect of corneal pathophysiology as it is required for corneal transparency and optimal vision. A decrease in corneal transparency causes visual acuity deterioration. Corneal tissue is avascular in nature and the presence of vascularization, which can be deep or superficial, is always pathologically related.
Corneal neovascularization is a sight-threatening condition that can be caused by inflammation related to infection, chemical injury, autoimmune conditions, post-corneal transplantation, and traumatic conditions among other ocular pathologies. Common causes of CNV within the cornea include trachoma, corneal ulcers, phylctenular keratoconjunctivitis, rosacea keratitis, interstitial keratitis, sclerosing keratitis, chemical burns, and wearing contact lenses for over-extended periods of time. Superficial presentations of CNV are usually associated with contact lens wear, while deep presentations may be caused by chronic inflammatory and anterior segment ocular diseases.
Corneal neovascularization is becoming increasingly common worldwide with an estimated incidence rate of 1.4 million cases per year, according to a 1998 study by the Massachusetts Eye and Ear Infirmary. The same study found that the tissue from twenty percent of corneas examined during corneal transplantations had some degree of neovascularization, negatively impacting the prognosis for individuals undergoing keratoplasty procedures.
Corneal hydrops might be caused by a tear in the recently discovered Dua's layer, a 15 micron thick layer between the corneal stroma and Descemet’s membrane, Harminder Dua suggests that this finding will affect corneal surgery, including penetrating keratoplasty, and understanding of corneal dystrophies and pathologies, such as acute hydrops.
A red eye is an eye that appears red due to illness or injury. It is usually injection and prominence of the superficial blood vessels of the conjunctiva, or sclera, which may be caused by disorders of these or adjacent structures. Conjunctivitis and subconjunctival hemorrhage are two of the less serious but more common causes.
Management includes assessing whether emergency action (including referral) is needed, or whether treatment can be accomplished without additional resources.
Slit lamp examination is invaluable in diagnosis but initial assessment can be performed using a careful history, testing vision (visual acuity), and carrying out a penlight examination.
Corneal hydrops or corneal rupture is an uncommon complication seen in people with advanced keratoconus or other corneal ectatic disorders, and is characterized by stromal edema due to leakage of aqueous humor through a tear in Descemet's membrane. Although a hydrops usually causes increased scarring of the cornea, occasionally it will benefit a patient by creating a flatter cone, aiding the fitting of contact lenses. Corneal transplantation is not usually indicated during corneal hydrops.
Conjunctival concretions can be seen easily by everting the eyelid. The projecting concretions should be removed. Removal is easily performed by a doctor. For example, using needles or sharp knife removes the concretion, under a local light anesthesia of the conjunctiva.
Previous long-standing eye infection which possibly during childhood time recalled as being treated with antibiotic and/or hospitalized over long period of time.
Treatment options include contact lenses, intrastromal corneal ring segments, corneal collagen cross-linking, or corneal transplant.
When cross-linking is performed only after the cornea becomes distorted, vision remains blurry even though the disease is stabilised. As a result, combining corneal collagen cross-linking with LASIK ('LASIK Xtra') aims to strengthen the cornea at the point of surgery and may be useful in cases where a very thin cornea is expected after the LASIK procedure. This would include cases of high spectacle power and people with thin corneas before surgery. Definitive evidence that the procedure can reduce the risk of corneal ectasia will only become available a number of years later as corneal ectasia, if it happens, usually occurs in the late post-operative period. Some study show that combining LASIK with cross-linking adds refractive stability to hyperopic treatments and may also do the same for very high myopic treatments.
In 2016, the FDA approved the KXL system and two photoenhancers for the treatment of corneal ectasia following refractive surgery.
Conjunctival concretions can be single, also multiple, less confluent. There is no difference between the site of the occurrence on the upper and lower eyelid, nor right or left eye. The vast majority of concretions are in the conjunctival surface rather than deep. There is no difference in age for predilection or incidence of concretions, due to the causes of conjunctivitis, aging, and even congenital factor.
The National Eye Institute reports keratoconus is the most common corneal dystrophy in the United States, affecting about one in 2,000 Americans, but some reports place the figure as high as one in 500. The inconsistency may be due to variations in diagnostic criteria, with some cases of severe astigmatism interpreted as those of keratoconus, and" vice versa". A long-term study found a mean incidence rate of 2.0 new cases per 100,000 population per year. Some studies have suggested a higher prevalence amongst females, or that people of South Asian ethnicity are 4.4 times as likely to suffer from keratoconus as Caucasians, and are also more likely to be affected with the condition earlier.
Keratoconus is normally bilateral (affecting both eyes) although the distortion is usually asymmetric and is rarely completely identical in both corneas. Unilateral cases tend to be uncommon, and may in fact be very rare if a very mild condition in the better eye is simply below the limit of clinical detection. It is common for keratoconus to be diagnosed first in one eye and not until later in the other. As the condition then progresses in both eyes, the vision in the earlier-diagnosed eye will often remain poorer than that in its fellow.