Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Young children with strabismus normally suppress the visual field of one eye (or part of it), whereas adults who develop strabismus normally do not suppress and therefore suffer from double vision (diplopia). This also means that adults (and older children) have a higher risk of post-operative diplopia after undergoing strabismus surgery than young children. Patients who have undergone strabismus surgery at a young age often have monofixation syndrome (with peripheral binocular fusion and a central suppression scotoma).
Among fifth and sixth grade children convergence insufficiency is 13%. In studies that used standardized definitions of Convergence insufficiency, investigators have reported a prevalence of 4.2% to 6% in school and clinic settings. The standard definition of Convergence insufficiency is exophoria greater at near than at distance, a receded near point of convergence, and reduced convergence amplitudes at near.
Strabismus can be seen in Down syndrome, Loeys-Dietz syndrome, cerebral palsy, and Edwards syndrome. The risk is increased among those with a family history of the condition.
Esophoria is an eye condition involving inward deviation of the eye, usually due to extra-ocular muscle imbalance. It is a type of heterophoria.
Causes include:
- Refractive errors
- Divergence insufficiency
- Convergence excess; this can be due to nerve, muscle, congenital or mechanical anomalies.
Unlike esotropia, fusion is possible and therefore diplopia is uncommon.
Exophoria can be caused by several factors, which include:
- Refractive errors - distance and near deviation approximately equal.
- Divergence excess - exodeviation is more than 15 dioptres greater for distance than near deviation.
- Convergence insufficiency - near exodeviation greater than distance deviation.
These can be due to nerve, muscle, or congenital problems, or due to mechanical anomalies. Unlike exotropia, fusion is possible in this condition, causing diplopia to be uncommon.
Suppression may treated with vision therapy, though there is a wide range of opinions on long-term effectiveness between eye care professionals, with little scientific evidence of long-term improvement of suppression, if the underlying cause is not addressed (strabismus, amblyopia, etc.).
The symptoms and signs associated with convergence insufficiency are related to prolonged, visually demanding, near-centered tasks. They may include, but are not limited to, diplopia (double vision), asthenopia (eye strain), transient blurred vision, difficulty sustaining near-visual function, abnormal fatigue,
headache, and abnormal postural adaptation, among others. In some cases, difficulty with making eye contact have been noted as a complaint amongst sufferers.
Note that some Internet resources confuse convergence and divergence dysfunction, reversing them.
People of all ages who have noticeable strabismus may experience psychosocial difficulties. Attention has also been drawn to potential socioeconomic impact resulting from cases of detectable strabismus. A socioeconomic consideration exists as well in the context of decisions regarding strabismus treatment, including efforts to re-establish binocular vision and the possibility of stereopsis recovery.
One study has shown that strabismic children commonly exhibit behaviors marked by higher degrees of inhibition, anxiety, and emotional distress, often leading to outright emotional disorders. These disorders are often related to a negative perception of the child by peers. This is due not only to an altered aesthetic appearance, but also because of the inherent symbolic nature of the eye and gaze, and the vitally important role they play in an individual's life as social components. For some, these issues improved dramatically following strabismus surgery. Notably, strabismus interferes with normal eye contact, often causing embarrassment, anger, and feelings of awkwardness, thereby affecting social communication in a fundamental way, with a possible negative effect on self esteem.
Children with strabismus, particularly those with exotropia (an outward turn), may be more likely to develop a mental health disorder than normal-sighted children. Researchers have theorized that esotropia (an inward turn) was not found to be linked to a higher propensity for mental illness due to the age range of the participants, as well as the shorter follow-up time period; esotropic children were monitored to a mean age of 15.8 years, compared with 20.3 years for the exotropic group. A subsequent study with participants from the same area monitored congenital esotropia patients for a longer time period; results indicated that esotropic patients "were" also more likely to develop mental illness of some sort upon reaching early adulthood, similar to those with constant exotropia, intermittent exotropia, or convergence insufficiency. The likelihood was 2.6 times that of controls. No apparent association with premature birth was observed, and no evidence was found linking later onset of mental illness to psychosocial stressors frequently encountered by those with strabismus.
Investigations have highlighted the impact that strabismus may typically have on quality of life. Studies in which subjects were shown images of strabismic and non-strabismic persons showed a strong negative bias towards those visibly displaying the condition, clearly demonstrating the potential for future socioeconomic implications with regard to employability, as well as other psychosocial effects related to an individual's overall happiness.
Adult and child observers perceived a right heterotropia as more disturbing than a left heterotropia, and child observers perceived an esotropia as "worse" than an exotropia. Successful surgical correction of strabismus—for adult patients as well as children—has been shown to have a significantly positive effect on psychological well-being.
Very little research exists regarding coping strategies employed by adult strabismics. One study categorized coping methods into three subcategories: avoidance (refraining from participation an activity), distraction (deflecting attention from the condition), and adjustment (approaching an activity differently). The authors of the study suggested that individuals with strabismus may benefit from psychosocial support such as interpersonal skills training.
No studies have evaluated whether psychosocial interventions have had any benefits on individuals undergoing strabismus surgery.
Retinal image size is determined by many factors. The size and position of the object being viewed affects the characteristics of the light entering the system. Corrective lenses affect these characteristics and are used commonly to correct refractive error. The optics of the eye including its refractive power and axial length also play a major role in retinal image size.
Aniseikonia can occur naturally or be induced by the correction of a refractive error, usually anisometropia (having significantly different refractive errors between each eye) or antimetropia (being myopic (nearsighted) in one eye and hyperopic (farsighted) in the other.) Meridional aniseikonia occurs when these refractive differences only occur in one meridian (see astigmatism). Refractive surgery can cause aniseikonia in much the same way that it is caused by glasses and contacts.
One cause of significant anisometropia and subsequent aniseikonia has been aphakia. Aphakic patients do not have a crystalline lens. The crystalline lens is often removed because of opacities called cataracts. The absence of this lens left the patient highly hyperopic (farsighted) in that eye. For some patients the removal was only performed on one eye, resulting in the anisometropia / aniseikonia. Today, this is rarely a problem because when the lens is removed in cataract surgery, an intraocular lens, or IOL is left in its place.
"Congenital esotropia," or "infantile esotropia," is a specific sub-type of primary concomitant esotropia. It is a constant esotropia of large and consistent size with onset between birth and six months of age. It is not associated with hyperopia, so the exertion of accommodative effort will not significantly affect the angle of deviation. It is, however, associated with other ocular dysfunctions including oblique muscle over-actions, Dissociated Vertical Deviation (DVD,) Manifest Latent Nystagmus, and defective abduction, which develops as a consequence of the tendency of those with infantile esotropia to 'cross fixate.' Cross fixation involves the use of the right eye to look to the left and the left eye to look to the right; a visual pattern that will be 'natural' for the person with the large angle esotropia whose eye is already deviated towards the opposing side.
The origin of the condition is unknown, and its early onset means that the affected individual's potential for developing binocular vision is limited. The appropriate treatment approach remains a matter of some debate. Some ophthalmologists favour an early surgical approach as offering the best prospect of binocularity whilst others remain unconvinced that the prospects of achieving this result are good enough to justify the increased complexity and risk associated with operating on those under the age of one year.
When this magnification difference becomes excessive the effect can cause diplopia, suppression, disorientation, eyestrain, headache, and dizziness and balance disorders.
Incomitant esotropias are conditions in which the esotropia varies in size with direction of gaze. They can occur in both childhood and adulthood, and arise as a result of neurological, mechanical or myogenic problems. These problems may directly affect the extra-ocular muscles themselves, and may also result from conditions affecting the nerve or blood supply to these muscles or the bony orbital structures surrounding them. Examples of conditions giving rise to an esotropia might include a VIth cranial nerve (or Abducens) palsy, Duane's syndrome or orbital injury.
A spasm of accommodation (also known as a ciliary spasm, an accommodation, or accommodative spasm) is a condition in which the ciliary muscle of the eye remains in a constant state of contraction. Normal accommodation allows the eye to "accommodate" for near-vision. However in a state of perpetual contraction, the ciliary muscle cannot relax when viewing distant objects. This causes vision to blur when attempting to view objects from a distance. This may cause pseudomyopia or latent hyperopia.
Although antimuscarinic drops (homoatropine 5%) can be applied topically to relax the muscle, this leaves the individual without any accommodation and, depending on refractive error, unable to see well at near distances. Also, excessive pupil dilation may occur as an unwanted side effect. This dilation may pose a problem since a larger pupil is less efficient at focusing light (see pupil, aperture, and optical aberration for more.)
Patients who have accommodative spasm may benefit from being given glasses or contacts that account for the problem or by using vision therapy techniques to regain control of the accommodative system..
Possible clinical findings include:
Normal Amplitude of accommodation and Near point of convergence
Reduced Negative relative accommodation
Difficulty clearing plus on facility testing
The causes of exotropia are not fully understood. There are six muscles that control eye movement, four that move the eye up and down and two that move it left and right. All these muscles must be coordinated and working properly in order for the brain to see a single image. When one or more of these muscles doesn't work properly, some form of strabismus may occur. Strabismus is more common in children with disorders that affect the brain such as cerebral palsy, Down syndrome, hydrocephalus, and brain tumors. One study has found that children with exotropia are three times more likely to develop a psychiatric disorder in comparison with the general population.
A comprehensive eye examination including an ocular motility (i.e., eye movement) evaluation and an evaluation of the internal ocular structures will allow an eye doctor to accurately diagnose the exotropia. Although glasses and/or patching therapy, exercises, or prisms may reduce or help control the outward-turning eye in some children, surgery is often required.
There is a common form of exotropia known as "convergence insufficiency" that responds well to orthoptic vision therapy including exercises. This disorder is characterized by an inability of the eyes to work together when used for near viewing, such as reading. Instead of the eyes focusing together on the near object, one deviates outward.
"Consecutive exotropia" is an exotropia that arises after an initial esotropia. Most often it results from surgical overcorrection of the initial esotropia. It can be addressed with further surgery or with vision therapy; vision therapy has shown promising results if the consecutive exotropia is intermittent, alternating and of small magnitude. (Consecutive exotropia may however also spontaneously develop from esotropia, without surgery or botulinum toxin treatment.)
Because of the risks of surgery, and because about 35% of people require at least one more surgery, many people try vision therapy first. This consists of visual exercises. Although vision therapy is generally not covered by American health insurance companies, many large insurers such as Aetna have recently begun offering full or partial coverage in response to recent studies.
Strabismus surgery is sometimes recommended if the exotropia is present for more than half of each day or if the frequency is increasing over time. It is also indicated if a child has significant exotropia when reading or viewing near objects or if there is evidence that the eyes are losing their ability to work as a single unit (binocular vision). If none of these criteria are met, surgery may be postponed pending simple observation with or without some form of eyeglass and/or patching therapy. In very mild cases, there is a chance that the exotropia will diminish with time. The long-term success of surgical treatment for conditions such as intermittent exotropia is not well proven, and surgery can often result in a worsening of symptoms due to overcorrection. Evidence from the available literature suggests that unilateral surgery was more effective than bilateral surgery for individuals affected with intermittent exotropia.
The surgical procedure for the correction of exotropia involves making a small incision in the tissue covering the eye in order to reach the eye muscles. The appropriate muscles are then repositioned in order to allow the eye to move properly. The procedure is usually done under general anesthesia. Recovery time is rapid, and most people are able to resume normal activities within a few days. Following surgery, corrective eyeglasses may be needed and, in many cases, further surgery is required later to keep the eyes straight.
When a child requires surgery, the procedure is usually performed before the child attains school age. This is easier for the child and gives the eyes a better chance to work together. As with all surgery, there are some risks. However, strabismus surgery is usually a safe and effective treatment.
Exophoria is particularly common in infancy and childhood, and increases with age.
Accommodative insufficiency (AI) involves the inability of the eye to focus properly on an object. AI is generally considered separate from presbyopia, but mechanically both conditions represent a difficulty engaging the near vision system (accommodation) to see near objects clearly. However, AI is the term used for a patient where normal near vision is expected, whereas presbyopia is specifically the loss of accommodation due to age. Approximately 80 percent of children diagnosed with convergence excess also demonstrate AI, a relationship attributed to the accommodative convergence.
Most patients are diagnosed by the age of 10 years and Duane's is more common in girls (60 percent of the cases) than boys (40 percent of the cases). A French study reports that this syndrome accounts for 1.9% of the population of strabismic patients, 53.5% of patients are female, is unilateral in 78% of cases, and the left eye (71.9%) is affected more frequently than the right. Around 10–20% of cases are familial; these are more likely to be bilateral than non-familial Duane syndrome. Duane syndrome has no particular race predilection.
A rostral lesion within the midbrain may affect the convergence center thus causing bilateral divergence of the eyes which is known as the WEBINO syndrome (Wall Eyed Bilateral INO) as each eye looks at the opposite "wall".
If the lesion affects the PPRF (or the abducens nucleus) and the MLF on the same side (the MLF having crossed from the opposite side), then the "one and a half syndrome" occurs which, simply put, involves paralysis of all conjugate horizontal eye movements other than abduction of the eye on the opposite side to the lesion.
Most conjunctivochalasis is thought to be caused by both a gradual thinning and stretching of the conjunctiva that accompanies age and a loss of adhesion between the conjunctiva and underlying sclera due to the dissolution of Tenon's capsule. The resulting loose, excess conjunctiva may mechanically irritate the eye and disrupt the tear film and its outflow, leading to dry eye and excess tearing. A correlation may also exist between inflammation in the eye and conjunctivochalasis; though it is unclear if this correlation is causal. Conjunctivochalasis may be associated with previous surgery, Blepharitis, Meibomian Gland Disorder (MGD), Ehlers-Danlos Syndrome, and Aqueous Tear Deficiency,
The disorder is caused by injury or dysfunction in the medial longitudinal fasciculus (MLF), a heavily myelinated tract that allows conjugate eye movement by connecting the paramedian pontine reticular formation (PPRF)-abducens nucleus complex of the contralateral side to the oculomotor nucleus of the ipsilateral side.
In young patients with bilateral INO, multiple sclerosis is often the cause. In older patients with one-sided lesions a stroke is a distinct possibility. Other causes are possible.
Because the disorder often occurs in people with typical dry eye symptoms, it can be difficult to distinguish readily the discomfort caused by the dry eye from that directly related to the redundant conjunctiva.
The gene sal-like 4 (SALL4) or CHN1 ("chimerin") has became a mutated gene (protein) and it is also one of the cause of the body's Duane Syndrome.
There have been cases of improvement in extra-ocular movement with botulinum toxin injection.
Dermatochalasis commonly affects the elderly, although sometimes it is congenitally acquired. The elderly version may begin to develop as early as 40 years of age, and it continues to progress with age. The congenital version may begin around 20 years of age. There is no racial predisposition towards developing dermatochalasis, and men and women are equally affected.