Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The prognosis of children diagnosed with intolerance to milk is good: patients respond to diet which excludes cow's milk protein and the majority of patients succeed in forming tolerance. Children with non-IgE-mediated cows milk intolerance have a good prognosis, whereas children with IgE-mediated cows milk allergy in early childhood have a significantly increased risk for persistent allergy, development of other food allergies, asthma and rhinoconjunctivitis.
A study has demonstrated that identifying and appropriately addressing food sensitivity in IBS patients not previously responding to standard therapy results in a sustained clinical improvement and increased overall well being and quality of life.
Overall, about 65% of people experience some form of lactose intolerance as they age past infancy, but there are significant differences between populations and regions, with rates as low as 5% among Northern Europeans and as high as more than 90% of adults in some communities of Asia.
Some populations, from an evolutionary perspective, have a better genetic makeup for tolerating lactose than others. In Northern European countries, lack of Vitamin D from the sun is balanced by intaking more milk and calcium. These countries have built up tolerance to lactose. Oppositely, regions of the south, Africa for example, rarely experienced Vitamin D deficiency and therefore tolerance from milk consumption did not develop the same way as in Northern European countries. Different populations will present certain gene constructs depending on the evolutionary and cultural pre-settings of the geographical region.
Primary congenital alactasia, also called congenital lactase deficiency, is an extremely rare, autosomal recessive enzyme defect that prevents lactase expression from birth. People with congenital lactase deficiency cannot digest lactose from birth, so cannot digest breast milk. This genetic defect is characterized by a complete lack of lactase (alactasia). About 40 cases have been reported worldwide, mainly limited to Finland. Before the 20th century, babies born with congenital lactase deficiency often did not survive, but death rates decreased with soybean-derived infant formulas and manufactured lactose-free dairy products.
Estimates of the prevalence of food intolerance vary widely from 2% to over 20% of the population. So far only three prevalence studies in Dutch and English adults have been based on double-blind, placebo-controlled food challenges. The reported prevalences of food allergy/intolerance (by questionnaires) were 12% to 19%, whereas the confirmed prevalences varied from 0.8% to 2.4%. For intolerance to food additives the prevalence varied between 0.01 and 0.23%.
Food intolerance rates were found to be similar in the population in Norway. Out of 4,622 subjects with adequately filled-in questionnaires, 84 were included in the study (1.8%) Perceived food intolerance is a common problem with significant nutritional consequences in a population with IBS. Of these 59 (70%) had symptoms related to intake of food, 62% limited or excluded food items from the diet.
Tests were performed for food allergy and malabsorption, but not for intolerance. There were no associations between the tests for food allergy and malabsorption and perceived food intolerance, among those with IBS. Perceived food intolerance was unrelated to musculoskeletal pain and mood disorders.
According to the RACP working group, "Though not considered a "cause" of CFS, some patients with chronic fatigue report food intolerances that can exacerbate symptoms."
Sucrose intolerance can be caused by genetic mutations in which both parents must contain this gene for the child to carry the disease (so-called primary sucrose intolerance). Sucrose intolerance can also be caused by irritable bowel syndrome, aging, or small intestine disease (secondary sucrose intolerance). There are specific tests used to help determine if a person has sucrose intolerance. The most accurate test is the enzyme activity determination, which is done by biopsying the small intestine. This test is a diagnostic for GSID. Other tests which can aid in the diagnosis of GSID but which are not truly diagnostic for the disease are the sucrose breath test, and a genetic test which tests for the absence of certain genes which are thought to be responsible for GSID.
Sucrose (also termed "saccharose") is a disaccharide and is a two-sugar chain composed of glucose and fructose which are bonded together. A more familiar name is table, beet, or cane sugar. It was believed that most cases of sucrose intolerance were to do an autosomal recessive, genetic, metabolic disease. Based on new data patients with heterozygous and compound heterozygous genotypes can have symptom presentation as well. GSID involves deficiency in the enzyme sucrase-isomaltase, which breaks apart the glucose and fructose molecules. When disaccharides are consumed, they must be broken down into monosaccharides by enzymes in the intestines before they can be absorbed. Monosaccharides, or single sugar units, are absorbed directly into the blood.
A deficiency of sucrase may result in malabsorption of sugar, which can lead to potentially serious symptoms. Since sucrose-isomaltase is involved in the digestion of starches, some GSID patients may not be able to absorb starches as well. It is important for those with sucrose intolerance to minimize sucrose consumption as much as possible. Dietary supplements or medications may be taken as a substitute for the enzyme missing or to introduce healthy bacteria into the immune system.
Sucrose intolerance, also called sucrase-isomaltase deficiency, congenital sucrase-isomaltase deficiency (CSID), or genetic sucrase-isomaltase deficiency (GSID), is the condition in which sucrase-isomaltase, an enzyme needed for proper metabolism of sucrose (sugar) and starch (i.e., grains and rice), is not produced or the enzyme produced is either partially functional or non-functional in the small intestine. All GSID patients lack fully functional sucrase, while the isomaltase activity can vary from minimal functionality to almost normal activity. The presence of residual isomaltase activity may explain why some GSID patients are better able to tolerate starch in their diet than others with GSID.
The highest prevalence rates are seen in the Inuit populations of Greenland (5–10%), Alaska (3–7%) and Canada (about 3%). European descent prevalence ranges from 0.2% to 0.05%. There is a lower prevalence reported in African Americans and Hispanics compared to Caucasians.
Inborn errors of carbohydrate metabolism are inborn error of metabolism that affect the catabolism and anabolism of carbohydrates.
An example is lactose intolerance.
Carbohydrates account for a major portion of the human diet. These carbohydrates are composed of three principal monosaccharides: glucose, fructose and galactose; in addition glycogen is the storage form of carbohydrates in humans. The failure to effectively use these molecules accounts for the majority of the inborn errors of human carbohydrates metabolism.
The NIH states: "The causes of most cases of reactive hypoglycemia are still open to debate. Some researchers suggest that certain people may be more sensitive to the body’s normal release of the hormone epinephrine, which causes many of the symptoms of hypoglycemia. Others believe deficiencies in glucagon secretion might lead to reactive hypoglycemia.
Stomach surgery or hereditary fructose intolerance are believed to be causes, albeit uncommon, of reactive hypoglycemia. myo-Inositol or D-chiro-inositol withdrawal can cause temporary reactive hypoglycemia.
There are different kinds of reactive hypoglycemia:
1. Alimentary hypoglycemia (consequence of dumping syndrome; it occurs in about 15% of people who have had stomach surgery)
2. Hormonal hypoglycemia (e.g., hypothyroidism)
3. Helicobacter pylori-induced gastritis (some reports suggest this bacteria may contribute to the occurrence of reactive hypoglycemia)
4. Congenital enzyme deficiencies (hereditary fructose intolerance, galactosemia, and leucine sensitivity of childhood)
5. Late hypoglycemia (occult diabetes; characterized by a delay in early insulin release from pancreatic β-cells, resulting in initial exaggeration of hyperglycemia during a glucose tolerance test)
"Idiopathic reactive hypoglycemia" is a term no longer used because researchers now know the underlying causes of reactive hypoglycemia and have the tools to perform the diagnosis and the pathophysiological data explaining the mechanisms.
To check if there is real hypoglycemia when symptoms occur, neither an oral glucose tolerance test nor a breakfast test is effective; instead, a hyperglucidic breakfast test or ambulatory glucose testing is the current standard.
The body requires a relatively constant input of glucose, a sugar produced upon digestion of carbohydrates, for normal functioning. Glucagon and insulin are among the hormones that ensure a normal range of glucose in the human body. Upon consumption of a meal, blood sugar normally rises, which triggers pancreatic cells to produce insulin. This hormone initiates the absorption of the just-digested blood glucose as glycogen into the liver for metabolism or storage, thereby lowering glucose levels in the blood. In contrast, the hormone glucagon is released by the pancreas as a response to lower than normal blood sugar levels. Glucagon initiates uptake of the stored glycogen in the liver into the bloodstream so as to increase glucose levels in the blood.
Sporadic, high-carbohydrate snacks and meals are deemed the specific causes of sugar crashes. The “crash” one feels is due to the rapid increase and subsequent decline of blood sugar in the body system as one begins and ceases consumption of high-sugar foods. More insulin than is actually needed is produced in response to the large, rapid ingestion of sugary foods.
There are various theories as to what determines whether a genetically susceptible individual will go on to develop coeliac disease. Major theories include surgery, pregnancy, infection and emotional stress.
The eating of gluten early in a baby's life does not appear to increase the risk of CD but later introduction after 6 months may increase it. There is uncertainty whether breastfeeding reduces risk. Prolonging breastfeeding until the introduction of gluten-containing grains into the diet appears to be associated with a 50% reduced risk of developing coeliac disease in infancy; whether this persists into adulthood is not clear. These factors may just influence the timing of onset.
Other cereals such as corn, millet, sorghum, teff, rice, and wild rice are safe for people with coeliac to consume, as well as noncereals such as amaranth, quinoa, and buckwheat. Noncereal carbohydrate-rich foods such as potatoes and bananas do not contain gluten and do not trigger symptoms.
Since hyperinsulinemia and obesity are so closely linked it is hard to determine whether hyperinsulinemia causes obesity or obesity causes hyperinsulinemia, or both.
Obesity is characterized by an excess of adipose tissue – insulin increases the synthesis of fatty acids from glucose, facilitates the entry of glucose into adipocytes and inhibits breakdown of fat in adipocytes.
On the other hand, adipose tissue is known to secrete various metabolites, hormones and cytokines that may play a role in causing hyperinsulinemia. Specifically cytokines secreted by adipose tissue directly affect the insulin signalling cascade, and thus insulin secretion. Adiponectins are cytokines that are inversely related to percent body fat; that is people with a low body fat will have higher concentrations of adiponectins where as people with high body fat will have lower concentrations of adiponectins. Weyer "et al." (2011) reported that hyperinsulinemia is strongly associated with low adiponectin concentrations in obese people, though whether low adiponectin has a causal role in hyperinsulinemia remains to be established.
- May lead to hypoglycemia or diabetes
- Increased risk of PCOS
- Increased synthesis of VLDL (hypertriglyceridemia)
- Hypertension (insulin increases sodium retention by the renal tubules)
- Coronary Artery Disease (increased insulin damages endothelial cells)
- Increased risk of cardiovascular disease
- Weight gain and lethargy (possibly connected to an underactive thyroid)
Lactose is a disaccharide sugar composed of galactose and glucose that is found in milk. Lactose can not be absorbed by the intestine and needs to be split in the small intestine into galactose and glucose by the enzyme called lactase; unabsorbed lactose can cause abdominal pain, bloating, diarrhea, gas, and nausea.
In most mammals, production of lactase diminishes after infants are weaned from maternal milk. However, 5% to 90% of the human population possess an advantageous autosomal mutation in which lactase production persists after infancy. The geographic distribution of lactase persistence is concordant with areas of high milk intake. Lactase non-persistence is common in tropical and subtropical countries. Individuals with lactase non-persistency may experience nausea, bloating and diarrhea after ingesting dairy.
Galactosemia (British galactosaemia) is a rare genetic metabolic disorder that affects an individual's ability to metabolize the sugar galactose properly. Galactosemia follows an autosomal recessive mode of inheritance that confers a deficiency in an enzyme responsible for adequate galactose degradation.
Friedrich Goppert (1870–1927), a German physician, first described the disease in 1917, with its cause as a defect in galactose metabolism being identified by a group led by Herman Kalckar in 1956.
Its incidence is about 1 per 60,000 births for people of European ancestry. In other populations the incidence rate differs. Galactosaemia is about one hundred times more common (1:480 births) within the Irish Traveller population.
No sexual predilection is observed because the deficiency of glycogen synthetase activity is inherited as an autosomal recessive trait.
Treatment of HFI depends on the stage of the disease, and the severity of the symptoms. Stable patients without acute intoxication events are treated by careful dietary planning that avoids fructose and its metabolic precursors. Fructose is replaced in the diet by glucose, maltose or other sugars. Management of patients with HFI often involves dietitians who have a thorough knowledge of what foods are acceptable.
Hypoglycemia due to endogenous insulin can be congenital or acquired, apparent in the newborn period, or many years later. The hypoglycemia can be severe and life-threatening or a minor, occasional nuisance. By far the most common type of severe but transient hyperinsulinemic hypoglycemia occurs accidentally in persons with type 1 diabetes who take insulin.
- Hypoglycemia due to endogenous insulin
- Congenital hyperinsulinism
- Transient neonatal hyperinsulinism (mechanism not known)
- Focal hyperinsulinism (K channel disorders)
- Paternal SUR1 mutation with clonal loss of heterozygosity of 11p15
- Paternal Kir6.2 mutation with clonal loss of heterozygosity of 11p15
- Diffuse hyperinsulinism
- K channel disorders
- SUR1 mutations
- Kir6.2 mutations
- Glucokinase gain-of-function mutations
- Hyperammonemic hyperinsulinism (glutamate dehydrogenase gain-of-function mutations)
- Short chain acyl coenzyme A dehydrogenase deficiency
- Carbohydrate-deficient glycoprotein syndrome (Jaeken's Disease)
- Beckwith-Wiedemann syndrome(suspected due to hyperinsulinism but pathophysiology uncertain: 11p15 mutation or IGF2 excess)
- Acquired forms of hyperinsulinism
- Insulinomas (insulin-secreting tumors)
- Islet cell adenoma or adenomatosis
- Islet cell carcinoma
- Adult nesidioblastosis
- Autoimmune insulin syndrome
- Noninsulinoma pancreatogenous hypoglycemia
- Reactive hypoglycemia (also see idiopathic postprandial syndrome)
- Gastric dumping syndrome
- Drug induced hyperinsulinism
- Sulfonylurea
- Aspirin
- Pentamidine
- Quinine
- Disopyramide
- Bordetella pertussis vaccine or infection
- D-chiro-inositol and myo-inositol
- Hypoglycemia due to exogenous (injected) insulin
- Insulin self-injected for treatment of diabetes (i.e., diabetic hypoglycemia)
- Insulin self-injected surreptitiously (e.g., Munchausen syndrome)
- Insulin self-injected in a suicide attempt or successful suicide
- Various forms of diagnostic challenge or "tolerance tests"
- Insulin tolerance test for pituitary or adrenergic response assessment
- Protein challenge
- Leucine challenge
- Tolbutamide challenge
- Insulin potentiation therapy
- Insulin-induced coma for depression treatment
Because of the ease of therapy (dietary exclusion of fructose), HFI can be effectively managed if properly diagnosed. In HFI, the diagnosis of homozygotes is difficult, requiring a genomic DNA screening with allele specific probes or an enzyme assay from a liver biopsy. Once identified, parents of infants who carry mutant aldolase B alleles leading to HFI, or older individuals who have clinical histories compatible with HFI can be identified and counselled with regard to preventive therapy: dietary exclusion of foods containing fructose, sucrose, or sorbitol. If possible, individuals who suspect they might have HFI, should avoid testing via fructose challenge as the results are non-conclusive for individuals with HFI and even if the diagnostic administration fructose is properly controlled, profound hypoglycemia and its sequelae can threaten the patient's well-being.
Developmental delay is a potential secondary effect of chronic or recurrent hypoglycemia, but is at least theoretically preventable. Normal neuronal and muscle cells do not express glucose-6-phosphatase, so GSD I causes no other neuromuscular effects.
The overall frequency of glycogen-storage disease is approximately 1 case per 20,000–25,000 people. Glycogen-storage disease type 0 is a rare form, representing less than 1% of all cases. The identification of asymptomatic and oligosymptomatic siblings in several glycogen-storage disease type 0 families has suggested that glycogen-storage disease type 0 is underdiagnosed.
FODMAPs (fermentable oligosaccharides, disaccharides, monosaccharides and polyols) that are present in gluten-containing grains have recently been identified as a possible cause of gastrointestinal symptoms in people with NCGS, in place of, or in addition to, gluten. FODMAPs cause mild wheat intolerance mainly limited to gastrointestinal symptoms.
Neutropenia is a manifestation of this disease. Granulocyte colony-stimulating factor (G-CSF, e.g. filgrastim) therapy can reduce the risk of infection.
To relieve reactive hypoglycemia, the NIH recommends taking the following steps:
- Avoiding or limiting sugar intake;
- Exercising regularly; exercise increases sugar uptake which decreases excessive insulin release
- Eating a variety of foods, including meat, poultry, fish, or nonmeat sources of protein, foods such as whole-grains, fruits, nuts, vegetables, and dairy products;
- Choosing high-fiber foods.
Other tips to prevent sugar crashes include:
- Avoiding eating meals or snacks composed entirely of carbohydrates; simultaneously ingest fats and proteins, which have slower rates of absorption.
- Consistently choosing longer lasting, complex carbohydrates to prevent rapid blood-sugar dips in the event that one does consume a disproportionately large amount of carbohydrates with a meal
- Monitoring any effects medication may have on symptoms.
Low-carbohydrate diet and/or frequent small split meals is the first treatment of this condition. The first important point is to add small meals at the middle of the morning and of the afternoon, when glycemia would start to decrease. If adequate composition of the meal is found, the fall in blood glucose is thus prevented. Patients should avoid rapidly absorbable sugars and thus avoid popular soft drinks rich in glucose or sucrose. They should also be cautious with drinks associating sugar and alcohol, mainly in the fasting state.
As it is a short-term ailment, a sugar crash does not usually require medical intervention in most people. The most important factors to consider when addressing this issue are the composition and timing of foods.
Acute low blood sugar symptoms are best treated by consuming small amounts of sweet foods, so as to regain balance in the body’s carbohydrate metabolism. Suggestions include sugary foods that are quickly digested, such as:
- Dried fruit
- Soft drinks
- Juice
- Sugar as sweets, tablets or cubes.
Lactose in food (such as dairy products) is broken down by the enzyme lactase into glucose and galactose. In individuals with galactosemia, the enzymes needed for further metabolism of galactose (Galactose-1-phosphate uridyltransferase) are severely diminished or missing entirely, leading to toxic levels of galactose 1-phosphate in various tissues as in the case of classic galactosemia, resulting in hepatomegaly (an enlarged liver), cirrhosis, renal failure, cataracts, vomiting, seizure, hypoglycemia, lethargy, brain damage, and ovarian failure. Without treatment, mortality in infants with galactosemia is about 75%.
Galactosemia is inherited in an autosomal recessive manner, meaning a child must inherit one defective gene from each parent to show the disease. Heterozygotes are carriers, because they inherit one normal gene and one defective gene. Carriers show no symptoms of galactosemia.
Possible causes include:
- Neoplasm
- Pancreatic cancer
- Polycystic ovary syndrome (PCOS)
- Trans fats
Malabsorption is a state arising from abnormality in absorption of food nutrients across the gastrointestinal (GI) tract. Impairment can be of single or multiple nutrients depending on the abnormality. This may lead to malnutrition and a variety of anaemias.
Normally the human gastrointestinal tract digests and absorbs dietary nutrients with remarkable efficiency. A typical Western diet ingested by an adult includes approximately 100 g of fat, 400 g of carbohydrate, 100 g of protein, 2 L of fluid, and the required sodium, potassium, chloride, calcium, vitamins, and other elements. Salivary, gastric, intestinal, hepatic, and pancreatic secretions add an additional 7–8 L of protein-, lipid-, and electrolyte-containing fluid to intestinal contents. This massive load is reduced by the small and large intestines to less than 200 g of stool that contains less than 8 g of fat, 1–2 g of nitrogen, and less than 20 mmol each of Na, K, Cl, HCO, Ca, or Mg.
If there is impairment of any of the many steps involved in the complex process of nutrient digestion and absorption, intestinal "malabsorption" may ensue. If the abnormality involves a single step in the absorptive process, as in primary lactase deficiency, or if the disease process is limited to the very proximal small intestine selective malabsorption of only a single nutrient may occur. However, generalized "malabsorption" of multiple dietary nutrients develops when the disease process is extensive, thus disturbing several digestive and absorptive processes, as occurs in coeliac disease with extensive involvement of the small intestine.