Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Distal radius fractures are the most common fractures seen in adults, with incidence in females outnumbering incidence in males by a factor of 2-3. Men who sustain distal radius fractures are usually younger, generally in their fifth decade (vs. seventh decade in females). The elderly are more susceptible because of the osteopenia and osteoporosis commonly seen in this age group. The majority of these fractures are extra-articular (i.e. not involving the joint).
This is also a common injury in children which may involve the growth plate (Salter-Harris fracture).
In young adults, the injury is often severe as a greater force is necessary to produce the injury.
Elbow Dysplasia is a significant genetically determined problem in many breeds of dog, often manifesting from puppyhood and continuing for life. In elbow dysplasia, the complex elbow joint suffers from a structural defect, often related to its cartilage. This initial condition, known as a "primary lesion", causes an abnormal level of wear and tear and gradual degradation of the joint, at times disabling or with chronic pain. Secondary processes such as inflammation and osteoarthritis can arise from this damage which increase the problem and add further problems of their own.
Supracondylar humerus fractures account for 55%-75% of all elbow fractures. They most commonly occur in children between ages 5–8, because remodeling of bone in this age group causes a decreased supracondylar anteroposterior diameter.
Being an extremely rare disease, it is unknown as to what exactly causes Panner Disease. It is believed that the disease may be brought on by continuous overuse of the elbow and that puts pressure on the elbow and also strains the elbow in children during the period of rapid bone growth. The overuse of the elbow can be due to the involvement in sports such as baseball, handball, and gymnastics where these sports involve throwing or putting a lot of pressure on the joints. These repeated activities cause microtraumas and results in the affected elbow being swollen, irritated, and in pain. Panner Disease results when the blood supply to the capitellum is disrupted and therefore the cells within the growth plate of the capitellum die and it becomes flat due to the softening and collapsing of the surrounding bone. To prevent future instances of Panner Disease the child is instructed to cease all physical and sports activities that involve the use of the affected elbow until the symptoms are relieved.
The most common cause is osteochondrosis, which is a disease of the joint cartilage, and specifically Osteochondritis dissecans (OCD or OD), the separation of a flap of cartilage from the joint surface as a result of avascular necrosis, which in turn arises from failed blood flow in the subchondral bone. Other common causes of elbow dysplasia included ununited anconeal process (UAP) and fractured or ununited medial coronoid process (FCP or FMCP).
In OCD, the normal change of cartilage to bone in the development of the joint fails or is delayed. The cartilage continues to grow and may split or become necrotic. The cause is uncertain, but possibly includes genetics, trauma, and nutrition (including excessive calcium and decreased Vitamin C intake). OCD lesions are found in the elbow at the medial epicondyle of the humerus. Specific conditions related to OCD include fragmentation of the medial coronoid process of the ulna (FMCP) and an ununited anconeal process of the ulna (UAP). All types of OCD of the elbow are most typically found in large breed dogs, with symptoms starting between the ages of 4 to 8 months. Males are affected twice as often as females. The disease often affects both elbows (30 to 70 percent of the time), and symptoms include intermittent lameness, joint swelling, and external rotation and abduction of the paw. Osteoarthritis will develop later in most cases.
UAP is caused by a separation from the ulna of the ossification center of the anconeal process. FMCP is caused by a failure of the coronoid process to unite with the ulna. OCD of the medial epicondyle of the humerus is caused by disturbed endochondral fusion of the epiphysis of the medial epicondyle with the distal end of the humerus, which may in turn be caused by avulsion of the epiphysis.
SLAC and SNAC are both caused by injury, for example a fall on an extended hand. SLAC is caused by rupture of the scapholunate ligament, SNAC is caused by a scaphoid fracture which does not heal and because of that will develop in a non-union fracture. SLAC is more common than SNAC; 55% of the patients with wrist osteoarthritis has a SLAC wrist. Although they have a different underlying pathology, they both lead to abnormal wrist kinematics which will eventually lead to osteoarthritis of the wrist.
Olecranon fractures are rare in children, constituting only 5 to 7% of all elbow fractures. This is because in early life, olecranon is thick, short and much stronger than the lower extremity of the humerus.
However, olecranon fractures are a common injury in adults. This is partly due to its exposed position on the point of the elbow.
In children the outcome of distal radius fracture treatment in casts is usually very successful with healing and return to normal function expected. Some residual deformity is common but this often remodels as the child grows. In the elderly, distal radius fractures heal and may result in adequate function following non-operative treatment. A large proportion of these fractures occur in elderly people that may have less requirement for strenuous use of their wrists. Some of these patients tolerate severe deformities and minor loss of wrist motion very well even without reduction of the fracture. In this low demand group only a short period of immobilization is indicated as rapid mobilization improves functional outcome.
In younger patients the injury requires greater force and results in more displacement particularly to the articular surface. Unless an accurate reduction of the joint surface is obtained, these patients are very likely to have long term symptoms of pain, arthritis, and stiffness.
Colles fractures occur in all age groups, although certain patterns follow an age distribution.
- In the elderly, because of the weaker cortex, the fracture is more often extra-articular.
- Younger individuals tend to require a higher energy force to cause the fracture and tend to have more complex intra-articular fractures. In children with open epiphyses, an equivalent fracture is the "epiphyseal slip", as can be seen in other joints, such as a slipped capital femoral epiphysis in the hip. This is a Salter I or II fracture with the deforming forces directed through the weaker epiphyseal plate.
- More common in women because of post-menopausal osteoporosis.
The etiology of the Galeazzi fracture is thought to be a fall that causes an axial load to be placed on a hyperpronated forearm. However, researchers have been unable to reproduce the mechanism of injury in a laboratory setting.
After the injury, the fracture is subject to deforming forces including those of the brachioradialis, pronator quadratus, and thumb extensors, as well as the weight of the hand. The deforming muscular and soft-tissue injuries that are associated with this fracture cannot be controlled with plaster immobilization.
A common cause is the supracondylar fracture of humerus. It can be corrected via a corrective osteotomy of the humerus and either internal or external fixation of the bone until union.
A cubitus varus deformity is more cosmetic than limiting of any function, however internal rotation of the radius over the ulna may be limited due to the overgrowth of the humerus. This may be noticeable during an activity such as using a computer mouse.
The exact cause of Kienböck's is not known, though there are thought to be a number of factors predisposing a person to Kienböck's.
Recent studies have made a correlation between Kienböck's sufferers and Western European ancestry, but no definitive link can be positively confirmed.
The necrosis of the lunate bone can frequently be traced to a trauma to the wrist, like a compound fracture, which could cause the lunate's blood supply to be interrupted. Blood flows to the lunate through several arteries, each supplying a percentage. When one of these pathways is severed, the likelihood the patient will develop necrosis increases.
Despite a preponderance of evidence, no particular cause has been conclusively verified.
Data exists on the internet that most people suffering from Kienböck's are affected in their dominant hand, though about one-third of sufferers report the condition in their non-dominant hand. In very few cases have there been people that have acquired it in both wrists.
Kienböck's disease is classified as a "rare disorder," meaning that it affects fewer than 200,000 people in the U.S. population.
Many Kienböck's patients are frustrated by the lack of consensus among hand surgeons about optimal treatments for Kienböck's. No matter what the disease's stage of progression, there is no one best treatment, and the decision is often based partially, or even mostly, on incidental factors such as the patient's pain tolerance, the patient's desire to return to active use of the hand (such as in manual occupations), and the surgeon's level of expertise with different treatments.
Though, since each case of Kienböck's is different, the makeup of the wrist and arm bones are important factors which are individualized to each patient. Therefore, one surgery will never be able to solve all the problems associated with the disease. Thus, no consensus can be reached among surgeons.
Leri-Weill dyschondrosteosis is a pseudoautosomal dominant disorder which occurs more frequently in females and is due to a mutation, deletion or duplication of the SHOX gene. The SHOX gene plays a particularly important role in the growth and maturation of bones in the arms and legs. The SHOX gene is located within band Xp22.3 of the pseudoautosomal region of the X chromosome, which escapes X-inactivation. Homozygous SHOX gene mutations result in Langer mesomelic dysplasia.
It is sometimes possible to correct the problem with surgery, though this has high failure rates for treatment of post-traumatic radioulnar synostosis.
Post-traumatic cases are most likely to develop following surgery for a forearm fracture, this is more common with high-energy injuries where the bones are broken into many pieces (comminuted). It can also develop following soft tissue injury to the forearm where there is haematoma formation.
The disease has been reported to affect 3 per 1000 infants younger than 6 months in the United States. No predilection by race or sex has been established. Almost all cases occur by the age of 5 months. The familial form is inherited in an autosomal dominant fashion with variable penetrance. The familial form tends to have an earlier onset and is present at birth in 24% of cases, with an average age at onset of 6.8 weeks. The average age at onset for the sporadic form is 9–11 weeks.
Cortical hyperostosis is a potential side effect of long-term use of prostaglandins in neonates.
Wrist osteoarthritis is a group of mechanical abnormalities resulting in joint destruction, which can occur in the wrist. These abnormalities include degeneration of cartilage and hypertrophic bone changes, which can lead to pain, swelling and loss of function. Osteoarthritis of the wrist is one of the most common conditions seen by hand surgeons.
Osteoarthritis of the wrist can be idiopathic, but it is mostly seen as a post-traumatic condition. There are different types of post-traumatic osteoarthritis. Scapholunate advanced collapse (SLAC) is the most common form, followed by Scaphoid Non-union Advanced collapse (SNAC). Other post-traumatic causes such as intra-articular fractures of the distal radius or ulna can also lead to wrist osteoarthritis, but are less common.
Panner Disease affects the elbow of the arm. At the elbow, the humerus meets the ulna and the radius. The humerus is the long bone that runs from the shoulder to the elbow, and the ulna and radius are the two bones that make up the forearm. The capitellum is the rounded knob on the end of the humerus and it is held by the radius due the radius’s cup-like shape. Panner Disease is part of a family of bone development diseases known as osteochondrosis. In osteochondrosis, the blood supply to an area of developing bone in the dominant elbow is temporarily disrupted by something that is not yet well understood. Therefore, the tissues in the bone are not getting enough blood and they begin to go through necrosis, and they begin to die. Normally, bones grow by the expansion and uniting of the growth plates, but osteochondrosis disrupts this process and the result is cell death and the loss of newly formed tissue. The death of the tissues eventually leads to deterioration of the bone’s growth plate. The bone’s growth plate is defined as the area at the end of a developing bone where cartilage cells change into bone cells. The bone tissue does regrow, but the necrosis can cause temporary problems in the affected area until the strenuous arm and elbow activity is significantly decreased or stopped for a period of time.
It is believed that Panner Disease is a precursor to a similar condition called osteochondritis dissecans of the capitellum (OCD). OCD is different from Panner disease because OCD occurs in older children and it does not involve the growth plate because by the time that OCD occurs the growth plates have already fused and the skeleton has finished growing.
It is a congenital subluxation or dislocation of the ulna's distal end, due to malformation of the bones. Sometimes, minor abnormalities of other bone structures, often caused by disease or injury, such as a fracture of the distal end of the radius with upward displacement of the distal fragment. The deformity varies in degree from a slight protrusion of the lower end of the ulna, to complete dislocation of the inferior radio-ulnar joint with marked radial deviation of the hand. Severe deformities are associated with congenital absence or hypoplasia of the radius.
The male:female rate of this disorder is 1:4. The incidence is unknown, and there is no described racial predominance. Even though Madelung's Deformity is considered a congenital disorder, symptoms sometimes aren't seen until adulthood. In most cases, symptoms find their onset during midchildhood. At this age, the relatively slower growth of the ulnar and palmar part of the radius, leads to an increasingly progressive deformity. Pain and deformity are the main symptoms patients present with. Typical clinical presentation consists of a short forearm, anterior-ulnar bow of the radius and a forward subluxation of the hand on the forearm. As mentioned before, the severity of the disorder varies greatly, which also leads to a spectrum of presentation.
Galeazzi fractures account for 3-7% of all forearm fractures. They are seen most often in males. Although Galeazzi fracture patterns are reportedly uncommon, they are estimated to account for 7% of all forearm fractures in adults. They are associated with a fall on an outstretched arm.
The Pink and Pulseless hand in supracondylar fracture has been assigned the following causes:
1. tear or entrapment of the brachial artery
2. spasm of the artery and
3. compression of the artery relieved by manipulation of the fracture
4. compression of median nerve.
Thus there is loss of circulation of forearm, causing lack of reperfusion of tissues resulting in tissue death causing compartment syndrome.
Therefore, the complications of elbow dislocations include the following:
- Posttraumatic periarticular calcification, which occurs in 3-5% of elbow injuries
- Myositis ossificans or calcific tendinitis
- Neurovascular injuries (8-21% of cases) — palsy to the anterior interosseus nerve at time of index injury is most common, followed by brachial artery injuries (5-13%). Injury to the ulnar nerve is reported with percutaneous pinning through the medial epicondyle.
- Osteochondral defects, intra-articular loose bodies, and avascular necrosis of the capitulum
- Instability
The Monteggia fracture is a fracture of the proximal third of the ulna with dislocation of the proximal head of the radius. It is named after Giovanni Battista Monteggia.
Olecranon fractures are common. Typically they are caused by direct blows to the elbow (e.g. motor vehicle accidents), and due to falls when the triceps are contracted. "Side-swipe" injury when driving a motor vehicle with an elbow projecting outside the vehicle resting on an open window's edge is an example.
Direct trauma: This can happen in a fall with landing on the elbow or by being hit by a solid object. Trauma to the elbow often results in comminuted fractures of the olecranon.
Indirect trauma: by falling and landing with an outstretched arm.
Powerful pull of the triceps muscle can also cause avulsion fractures.
Radial dysplasia, also known as radial club hand or radial longitudinal deficiency, is a congenital difference occurring in a longitudinal direction resulting in radial deviation of the wrist and shortening of the forearm. It can occur in different ways, from a minor anomaly to complete absence of the radius, radial side of the carpal bones and thumb. Hypoplasia of the distal humerus may be present as well and can lead to stiffnes of the elbow. Radial deviation of the wrist is caused by lack of support to the carpus, radial deviation may be reinforced if forearm muscles are functioning poorly or have abnormal insertions. Although radial longitudinal deficiency is often bilateral, the extent of involvement is most often asymmetric.
The incidence is between 1:30,000 and 1:100,000 and it is more often a sporadic mutation rather than an inherited condition. In case of an inherited condition, several syndromes are known for an association with radial dysplasia, such as the cardiovascular Holt-Oram syndrome, the gastrointestinal VATER syndrome and the hematologic Fanconi anemia and TAR syndrome. Other possible causes are an injury to the apical ectodermal ridge during upper limb development, intrauterine compression, or maternal drug use (thalidomide).