Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
It may be acquired from:
- Diseases. Some of the diseases that present nystagmus as a pathological sign:
- Aniridia
- Toxic or metabolic reasons could be the result of the following:
- Central nervous system (CNS) disorders, such as with a cerebellar problem, the nystagmus can be in any direction "including" horizontal. Purely vertical nystagmus is usually central in origin, but it is also a frequent adverse effect of high phenytoin toxicity. Causes include:
Early onset nystagmus occurs more frequently than acquired nystagmus. It can be insular or accompany other disorders (such as micro-ophthalmic anomalies or Down Syndrome). Early-onset nystagmus itself is usually mild and non-progressive. The affected persons are not normally aware of their spontaneous eye movements, but vision can be impaired depending on the severity of the movements.
Types of early-onset nystagmus include the following:
- Infantile:
- Albinism
- Aniridia
- Bilateral congenital cataract
- Bilateral optic nerve hypoplasia
- Idiopathic
- Leber's congenital amaurosis
- Optic nerve or macular disease
- Persistent tunica vasculosa lentis
- Rod monochromatism
- Visual-motor syndrome of functional monophthalmus
- Latent nystagmus
- Noonan syndrome
- Nystagmus blockage syndrome
X-linked infantile nystagmus is associated with mutations of the gene FRMD7, which is located on the X chromosome.
Infantile nystagmus is also associated with two X-linked eye diseases known as complete congenital stationary night blindness (CSNB) and incomplete CSNB (iCSNB or CSNB-2), which are caused by mutations of one of two genes located on the X chromosome. In CSNB, mutations are found in NYX (nyctalopin). CSNB-2 involves mutations of CACNA1F, a voltage-gated calcium channel that, when mutated, does not conduct ions.
This remains undetermined at the present time. A recent study by Major et al. reports that:
"Prematurity, family history or secondary ocular history, perinatal or gestational complications, systemic disorders, use of supplemental oxygen as a neonate, use of systemic medications, and male sex were found to be significant risk factors for infantile esotropia."
Further recent evidence indicates that a cause for "infantile strabismus" may lie with the input that is provided to the visual cortex. In particular, neonates who suffer injuries that, directly or indirectly, perturb binocular inputs into the primary visual cortex (V1) have a far higher risk of developing strabismus than other infants.
A paper published by Eltern für Impfaufklärung, a German Anti-Vaccination activist group, cites a study by The Robert Koch Institute (RKI), claiming significant correlation between children who received Vaccinations and the onset of cause of Spine, Face & Eye Asymmetry.
A rostral lesion within the midbrain may affect the convergence center thus causing bilateral divergence of the eyes which is known as the WEBINO syndrome (Wall Eyed Bilateral INO) as each eye looks at the opposite "wall".
If the lesion affects the PPRF (or the abducens nucleus) and the MLF on the same side (the MLF having crossed from the opposite side), then the "one and a half syndrome" occurs which, simply put, involves paralysis of all conjugate horizontal eye movements other than abduction of the eye on the opposite side to the lesion.
The disorder is caused by injury or dysfunction in the medial longitudinal fasciculus (MLF), a heavily myelinated tract that allows conjugate eye movement by connecting the paramedian pontine reticular formation (PPRF)-abducens nucleus complex of the contralateral side to the oculomotor nucleus of the ipsilateral side.
In young patients with bilateral INO, multiple sclerosis is often the cause. In older patients with one-sided lesions a stroke is a distinct possibility. Other causes are possible.
There have been cases of improvement in extra-ocular movement with botulinum toxin injection.
Clinically Infantile esotropia must be distinguished from:
1. VIth Cranial nerve or abducens palsy
2. Nystagmus Blockage Syndrome
3. Esotropia arising secondary to central nervous system abnormalities (in cerebral palsy for example)
4. Primary Constant esotropia
5. Duane's Syndrome
"Congenital esotropia," or "infantile esotropia," is a specific sub-type of primary concomitant esotropia. It is a constant esotropia of large and consistent size with onset between birth and six months of age. It is not associated with hyperopia, so the exertion of accommodative effort will not significantly affect the angle of deviation. It is, however, associated with other ocular dysfunctions including oblique muscle over-actions, Dissociated Vertical Deviation (DVD,) Manifest Latent Nystagmus, and defective abduction, which develops as a consequence of the tendency of those with infantile esotropia to 'cross fixate.' Cross fixation involves the use of the right eye to look to the left and the left eye to look to the right; a visual pattern that will be 'natural' for the person with the large angle esotropia whose eye is already deviated towards the opposing side.
The origin of the condition is unknown, and its early onset means that the affected individual's potential for developing binocular vision is limited. The appropriate treatment approach remains a matter of some debate. Some ophthalmologists favour an early surgical approach as offering the best prospect of binocularity whilst others remain unconvinced that the prospects of achieving this result are good enough to justify the increased complexity and risk associated with operating on those under the age of one year.
Incomitant esotropias are conditions in which the esotropia varies in size with direction of gaze. They can occur in both childhood and adulthood, and arise as a result of neurological, mechanical or myogenic problems. These problems may directly affect the extra-ocular muscles themselves, and may also result from conditions affecting the nerve or blood supply to these muscles or the bony orbital structures surrounding them. Examples of conditions giving rise to an esotropia might include a VIth cranial nerve (or Abducens) palsy, Duane's syndrome or orbital injury.
Pendular nystagmus is a sinusoidal oscillation, which refers to the waveform of involuntary eye movements that may occur in any direction. It is characterized by the multidimensional slow eye movements of the eyes (1 Hz frequency) with an equal velocity in each direction that resembles the trajectory of a pendulum. These pattern of these movements may differ between the two eyes. Depending upon the pattern of movements, pendular nystagmus has been divided into different subtypes such as congenital nystagmus, acquired pendular nystagmus, and amaurotic nystagmus.
The optokinetic response is a combination of a slow-phase and fast-phase eye movements. It is seen when an individual follows a moving object with their eyes, which then moves out of the field of vision at which point their eye moves back to the position it was in when it first saw the object. The reflex develops at about 6 months of age.
Optokinetic nystagmus (OKN) is nystagmus that occurs in response to a rotation movement. It is present normally. The optokinetic response allows the eye to follow objects in motion when the head remains stationary (e.g., observing individual telephone poles on the side of the road as one travels by them in a car, or observing stationary objects while walking past them).
The number of cases is around 0.5 to 0.7 per 10,000 births, making it a relatively rare condition.
The syndrome usually results from single unilateral lesion of the paramedian pontine reticular formation and the ipsilateral medial longitudinal fasciculus. An alternative anatomical cause is a lesion of the abducens nucleus (VI) on one side (resulting in a failure of abduction of the ipsilateral eye and adduction of the contralateral eye = conjugate gaze palsy towards affected side), with interruption of the ipsilateral medial longitudinal fasciculus after it has crossed the midline from its site of origin in the contralateral abducens (VI) nucleus (resulting in a failure of adduction of the ipsilateral eye).
Amaurotic nystagmus is defined as the nystagmus associated with blindness or the central vision defects. It is characterized by the pendular or jerky movements of the eyes in the patients who have visual impairement for a long period of time.
The eye findings of Parinaud's Syndrome generally improve slowly over months, especially with resolution of the causative factor; continued resolution after the first 3–6 months of onset is uncommon. However, rapid resolution after normalization of intracranial pressure following placement of a ventriculoperitoneal shunt has been reported.
Treatment is primarily directed towards etiology of the dorsal midbrain syndrome. A thorough workup, including neuroimaging is essential to rule out anatomic lesions or other causes of this syndrome. Visually significant upgaze palsy can be relieved with bilateral inferior rectus recessions. Retraction nystagmus and convergence movement are usually improved with this procedure as well.
Parinaud's Syndrome results from injury, either direct or compressive, to the dorsal midbrain. Specifically, compression or ischemic damage of the mesencephalic tectum, including the superior colliculus adjacent oculomotor (origin of cranial nerve III) and Edinger-Westphal nuclei, causing dysfunction to the motor function of the eye.
Classically, it has been associated with three major groups:
1. Young patients with brain tumors in the pineal gland or midbrain: pinealoma (intracranial germinomas) are the most common lesion producing this syndrome.
2. Women in their 20s-30s with multiple sclerosis
3. Older patients following stroke of the upper brainstem
However, any other compression, ischemia or damage to this region can produce these phenomena: obstructive hydrocephalus, midbrain hemorrhage, cerebral arteriovenous malformation, trauma and brainstem toxoplasmosis infection. Neoplasms and giant aneurysms of the posterior fossa have also been associated with the midbrain syndrome.
Vertical supranuclear ophthalmoplegia has also been associated with metabolic disorders, such as Niemann-Pick disease, Wilson's disease, kernicterus, and barbiturate overdose.
Colobomas can be associated with a mutation in the "PAX2" gene.
Eye abnormalities have been shown to occur in over 90% of children with fetal alcohol syndrome.
If an optokinetic drum is available, rotate the drum in front of the patient. Ask the patient to look at the drum as you rotate it slowly. If an optokinetic drum is not available, move a strip of paper with alternating 2-inch black and white strips across the patient's visual field. Pass it in front of the patient's eye at reading distance while instructing the patient to look at it as it rapidly moves by. With normal vision, a nystagmus develops in both adults and infants. The nystagmus consists of initial slow phases in the direction of the stimulus (smooth pursuits), followed by fast, corrective phases (saccade). Presence of nystagmus indicates an intact visual pathway.
Another effective method is to hold a mirror in front of the patient and slowly rotate the mirror to either side of the patient. The patient with an intact visual pathway will maintain eye contact with herself or himself. This compelling optokinetic stimulus forces reflex slow eye movements.
OKN can be used as a crude assessment of the visual system, particularly in infants. When factitious blindness or malingering is suspected, check for optokinetic nystagmus to determine whether there is an intact visual pathway.
Persistent hyperplastic primary vitreous (PHPV), also known as Persistent Fetal Vasculature (PFV), is a rare congenital developmental anomaly of the eye that results
following failure of the embryological, primary vitreous and hyaloid vasculature to regress. It can be present in three forms: purely anterior (persistent tunica vasculosa lentis and persistent posterior fetal fibrovascular sheath of the lens), purely posterior (falciform retinal septum and ablatio falcicormis congenita) and a combination of both. Most examples of PHPV are unilateral and non-hereditary. When bilateral, PHPV may follow an autosomal recessive or autosomal dominant inheritance pattern.
Bruns nystagmus is an unusual type of bilateral nystagmus most commonly occurring in patients with cerebellopontine angle tumours. It is caused by the combination of slow, large amplitude nystagmus (gaze paretic nystagmus) when looking towards the side of the lesion, and rapid, small amplitude nystagmus (vestibular nystagmus) when looking away from the side of the lesion. It occurs in 11% of patients with vestibular schwannoma, and occurs mainly in patients with larger tumours (67% of patients with tumours over 3.5 cm diameter). Bruns nystagmus is also associated with an increased incidence of balance disturbance in patients with vestibular schwannoma. It may be caused by the compression of both flocculi, the vestibular part of the cerebellum, and improvement in both the nystagmus and balance problems occur commonly after removal of the tumour.
Bruns nystagmus is named for Ludwig Bruns (1858 – 1915).
Zonular cataract and nystagmus, also referred as Nystagmus with congenital zonular cataract is a rare congenital disease associated with Nystagmus and zonular cataract of the eye.
The primary vitreous used in formation of the eye during fetal development remains in the eye upon birth and is hazy and scarred. The symptoms are leukocoria, strabismus, nystagmus and blurred vision, blindness.
It has been suggested that the disease follows a x-linked pattern of inheritance though studies done on this particular disease are few.
Nyctalopia (from Greek νύκτ-, "nykt-" "night"; ἀλαός, "alaos" "blind, not seeing", and ὄψ, "ops" "eye"), also called night-blindness, is a condition making it difficult or impossible to see in relatively low light. It is a symptom of several eye diseases. Night blindness may exist from birth, or be caused by injury or malnutrition (for example, vitamin A deficiency). It can be described as insufficient adaptation to darkness.
The most common cause of nyctalopia is retinitis pigmentosa, a disorder in which the rod cells in the retina gradually lose their ability to respond to the light. Patients suffering from this genetic condition have progressive nyctalopia and eventually their daytime vision may also be affected. In X-linked congenital stationary night blindness, from birth the rods either do not work at all, or work very little, but the condition doesn't get worse.
Another cause of night blindness is a deficiency of retinol, or vitamin A, found in fish oils, liver and dairy products.
The opposite problem, the inability to see in bright light, is known as "hemeralopia" and is much rarer.
Since the outer area of the retina is made up of more rods than cones, loss of peripheral vision often results in night blindness. Individuals suffering from night blindness not only see poorly at night, but also require extra time for their eyes to adjust from brightly lit areas to dim ones. Contrast vision may also be greatly reduced.
Rods contain a receptor-protein called rhodopsin. When light falls on rhodopsin, it undergoes a series of conformational changes ultimately generating electrical signals which are carried to the brain via the optic nerve. In the absence of light, rhodopsin is regenerated. The body synthesizes rhodopsin from vitamin A, which is why a deficiency in vitamin A causes poor night vision.
Refractive "vision correction" surgery (especially PRK with the complication of "haze") may rarely cause a reduction in best night-time acuity due to the impairment of contrast sensitivity function (CSF) which is induced by intraocular light-scatter resulting from surgical intervention in the natural structural integrity of the cornea.
Genetic tests and related research are currently being performed at Centogene AG in Rostock, Germany; John and Marcia Carver Nonprofit Genetic Testing Laboratory in Iowa City, IA; GENESIS Center for Medical Genetics in Poznan, Poland; Miraca Genetics Laboratories in Houston, TX; Asper Biotech in Tartu, Estonia; CGC Genetics in Porto, Portugal; CEN4GEN Institute for Genomics and Molecular Diagnostics in Edmonton, Canada; and Reference Laboratory Genetics - Barcelona, Spain.