Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
"Breastfeeding jaundice" or "lack of breastfeeding jaundice," is caused by insufficient breast milk intake, resulting in inadequate quantities of bowel movements to remove bilirubin from the body. This leads to increased enterohepatic circulation, resulting in increased reabsorption of bilirubin from the intestines. Usually occurring in the first week of life, most cases can be ameliorated by frequent breastfeeding sessions of sufficient duration to stimulate adequate milk production.
Whereas breastfeeding jaundice is a mechanical problem, breast milk jaundice is a biochemical occurrence and the higher bilirubin possibly acts as an antioxidant. Breast milk jaundice occurs later in the newborn period, with the bilirubin level usually peaking in the sixth to 14th days of life. This late-onset jaundice may develop in up to one third of healthy breastfed infants.
- First, at birth, the gut is sterile, and normal gut flora takes time to establish. The bacteria in the adult gut convert conjugated bilirubin to stercobilinogen which is then oxidized to stercobilin and excreted in the stool. In the absence of sufficient bacteria, the bilirubin is de-conjugated by brush border β-glucuronidase and reabsorbed. This process of re-absorption is called enterohepatic circulation. It has been suggested that bilirubin uptake in the gut (enterohepatic circulation) is increased in breast fed babies, possibly as the result of increased levels of epidermal growth factor (EGF) in breast milk. Breast milk also contains glucoronidase which will increase deconjugation and enterohepatic recirculation of bilirubin.
- Second, the breast-milk of some women contains a metabolite of progesterone called 3-alpha-20-beta pregnanediol. This substance inhibits the action of the enzyme uridine diphosphoglucuronic acid (UDPGA) glucuronyl transferase responsible for conjugation and subsequent excretion of bilirubin. In the newborn liver, activity of glucuronyl transferase is only at 0.1-1% of adult levels, so conjugation of bilirubin is already reduced. Further inhibition of bilirubin conjugation leads to increased levels of bilirubin in the blood. However, these results have not been supported by subsequent studies.
- Third, an enzyme in breast milk called lipoprotein lipase produces increased concentration of nonesterified free fatty acids that inhibit hepatic glucuronyl transferase, which again leads to decreased conjugation and subsequent excretion of bilirubin.
Yellow discoloration of the skin, especially on the palms and the soles, but not of the sclera or inside the mouth is due to carotenemia—a harmless condition.
"Neonatal jaundice" is usually harmless: this condition is often seen in infants around the second day after birth, lasting until day 8 in normal births, or to around day 14 in premature births. Typical causes for neonatal jaundice include normal physiologic jaundice, jaundice due to formula supplementation, and hemolytic disorders that include hereditary spherocytosis, glucose-6-phosphate dehydrogenase deficiency, pyruvate kinase deficiency, ABO/Rh blood type autoantibodies, or infantile pyknocytosis. Serum bilirubin normally drops to a low level without any intervention required. In cases where bilirubin rises higher, a brain-damaging condition known as kernicterus can occur, leading to significant disability. This condition has been rising in recent years due to less time spent outdoors. A Bili light is often the tool used for early treatment, which often consists of exposing the baby to intensive phototherapy. Sunbathing is effective treatment, and has the advantage of ultra-violet-B, which promotes Vitamin D production. Bilirubin count is lowered through bowel movements and urination, so frequent and effective feedings are especially important.
Complications of HDN could include kernicterus, hepatosplenomegaly, inspissated (thickened or dried) bile syndrome and/or greenish staining of the teeth, hemolytic anemia and damage to the liver due to excess bilirubin. Similar conditions include acquired hemolytic anemia, congenital toxoplasma and syphilis infection, congenital obstruction of the bile duct and cytomegalovirus infection.
- High at birth or rapidly rising bilirubin
- Prolonged hyperbilirubinemia
- Bilirubin Induced Neuorlogical Dysfunction
- Cerebral Palsy
- Kernicterus
- Neutropenia
- Thrombocytopenia
- Hemolytic Anemia - MUST NOT be treated with iron
- Late onset anemia - Must NOT be treated with iron. Can persist up to 12 weeks after birth.
In 2003, the incidence of Rh(D) sensitization in the United States was 6.8 per 1000 live births; 0.27% of women with an Rh incompatible fetus experience alloimmunization.
Infants with neonatal hepatitis caused by the cytomegalovirus, rubella or the hepatitis A, B, and C viruses may transmit the infection to others who come in close contact with the infant.
These infected infants should not come into contact with pregnant women because of the possibility that the woman will transmit the virus to her unborn child.
In the 80 percent of the cases where there is no virus identified as the cause.
Possible causes:
- pregnancy
- androgens
- birth control pills
- antibiotics (such as TMP/SMX)
- abdominal mass (e.g. cancer)
- biliary atresia and other pediatric liver diseases
- biliary trauma
- congenital anomalies of the biliary tract
- gallstones
- acute hepatitis
- cystic fibrosis
- intrahepatic cholestasis of pregnancy (obstetric cholestasis)
- primary biliary cirrhosis, an autoimmune disorder
- primary sclerosing cholangitis, associated with inflammatory bowel disease
- some drugs (e.g. flucloxacillin and erythromycin)
Drugs such as gold salts, nitrofurantoin, anabolic steroids, chlorpromazine, prochlorperazine, sulindac, cimetidine, erythromycin, estrogen, and statins can cause cholestasis and may result in damage to the liver.
Hemolytic anemia affects nonhuman species as well as humans. It has been found, in a number of animal species, to result from specific triggers.
Some notable cases include hemolytic anemia found in black rhinos kept in captivity, with the disease, in one instance, affecting 20% of captive rhinos at a specific facility. The disease is also found in wild rhinos.
Dogs and cats differ slightly from humans in some details of their RBC composition and have altered susceptibility to damage, notably, increased susceptibility to oxidative damage from consumption of onion. Garlic is less toxic to dogs than onion.
Estrogens, and particularly glucuronides such as estradiol-17β-D-glucuronide, have been shown to cause cholestasis in animal studies, by reducing bile acid uptake by hepatocytes.
Acquired hemolytic anemia may be caused by immune-mediated causes, drugs and other miscellaneous causes.
- Immune-mediated causes could include transient factors as in "Mycoplasma pneumoniae" infection (cold agglutinin disease) or permanent factors as in autoimmune diseases like autoimmune hemolytic anemia (itself more common in diseases such as systemic lupus erythematosus, rheumatoid arthritis, Hodgkin's lymphoma, and chronic lymphocytic leukemia).
- Spur cell hemolytic anemia
- Any of the causes of hypersplenism (increased activity of the spleen), such as portal hypertension.
- Acquired hemolytic anemia is also encountered in burns and as a result of certain infections (e.g. malaria).
- Lead poisoning resulting from the environment causes non-immune hemolytic anemia.
- Runners can suffer hemolytic anemia due to "footstrike hemolysis", owing to the destruction of red blood cells in feet at foot impact.
- Low-grade hemolytic anemia occurs in 70% of prosthetic heart valve recipients, and severe hemolytic anemia occurs in 3%.
The causes of intrahepatic cholestasis of pregnancy are still not fully understood. Hormones and genetic factors are likely to be important in the pathogenesis of the disease. A number of features of the disease suggest a link to hormones:
- ICP occurs in the third trimester at the time when hormone levels are at their highest.
- Twin and triplet pregnancies, which are associated with higher hormone levels, show a higher incidence of ICP.
- ICP resolves quickly after delivery, when placental hormone production ceases.
- Older high-dose estrogen oral contraceptive pills could cause features of ICP.
The mechanism of hepatomegaly consists of vascular swelling, inflammation (due to the various causes that are infectious in origin) and deposition of (1) non-hepatic cells or (2) increased cell contents (such due to iron in hemochromatosis or hemosiderosis and fat in fatty liver disease)
Cholestasis is a condition where bile cannot flow from the liver to the duodenum. The two basic distinctions are an obstructive type of cholestasis where there is a mechanical blockage in the duct system that can occur from a gallstone or malignancy, and metabolic types of cholestasis which are disturbances in bile formation that can occur because of genetic defects or acquired as a side effect of many medications.
Biliary atresia seems to affect females slightly more often than males, and Asians and African Americans more often than Caucasians. It is common for only one child in a pair of twins or within the same family to have the condition. There seems to be no link to medications or immunizations given immediately before or during pregnancy. Diabetes during pregnancy particularly during the first trimester seems to predispose to a number of distinct congenital abnormalities in the infant such as sacral agenesis and the syndromic form of biliary atresia.
Hepatomegaly is the condition of having an enlarged liver. It is a non-specific medical sign having many causes, which can broadly be broken down into infection, hepatic tumours, or metabolic disorder. Often, hepatomegaly will present as an abdominal mass. Depending on the cause, it may sometimes present along with jaundice.
G6PD-deficient individuals do not appear to acquire any illnesses more frequently than other people, and may have less risk than other people for acquiring ischemic heart disease and cerebrovascular disease.
An association between biliary atresia and the ADD3 gene was first detected in Chinese populations through a Genome-wide association study, and was confirmed in Thai Asians and Caucasians. A possible association with deletion of the gene GPC1, which encodes a glypican 1-a heparan sulfate proteoglycan, has been reported. This gene is located on the long arm of chromosome 2 (2q37) and is involved in the regulation of inflammation and the Hedgehog gene.
Neonates with biliary atresia were found to have null GSTM1 genotype while all their moms were heterozygous for GSTM1. Thus these infants are protected intrauterine by their maternal detoxification system, yet once born they cannot handle the detoxification of aflatoxin load.
Many substances are potentially harmful to people with G6PD deficiency. Variation in response to these substances makes individual predictions difficult. Antimalarial drugs that can cause acute hemolysis in people with G6PD deficiency include primaquine, pamaquine, and chloroquine. There is evidence that other antimalarials may also exacerbate G6PD deficiency, but only at higher doses. Sulfonamides (such as sulfanilamide, sulfamethoxazole, and mafenide), thiazolesulfone, methylene blue, and naphthalene should also be avoided by people with G6PD deficiency as they antagonize folate synthesis, as should certain analgesics (such as phenazopyridine and acetanilide) and a few non-sulfa antibiotics (nalidixic acid, nitrofurantoin, isoniazid, dapsone, and furazolidone). Henna has been known to cause hemolytic crisis in G6PD-deficient infants. Rasburicase is also contraindicated in G6PD deficiency. High dose intravenous vitamin C has also been known to cause haemolysis in G6PD deficiency carriers, thus G6PD deficiency testing is routine before infusion of doses of 25g or more.
Congenital malaria is an extremely rare condition which occurs due to transplacental transmission of maternal infection.
Clinical features include fever, irritability, feeding problems, anemia, hepatosplenomegaly and jaundice. Clinical features commence only after 3 weeks due to the protective effect of transplacentally transmitted antibodies.
Gilbert's syndrome (GS) is a mild liver disorder in which the liver does not properly process bilirubin. Many people never have symptoms. Occasionally a slight yellowish color of the skin or whites of the eyes may occur. Other possible symptoms include feeling tired, weakness, and abdominal pain.
Gilbert's syndrome is due to a mutation in the UGT1A1 gene which results in decreased activity of the bilirubin uridine diphosphate glucuronosyltransferase enzyme. It is typically inherited in an autosomal recessive pattern and occasionally in an autosomal dominant pattern depending on the type of mutation. Episodes of jaundice may be triggered by stress such as exercise, menstruation, or not eating. Diagnosis is based on higher levels of unconjugated bilirubin in the blood without either signs of other liver problems or red blood cell breakdown.
Typically no treatment is needed. If jaundice is significant phenobarbital may be used. Gilbert's syndrome affects about 5% of people in the United States. Males are more often diagnosed than females. It is often not noticed until late childhood to early adulthood. The condition was first described in 1901 by Augustin Nicolas Gilbert.
Alcoholic hepatitis is hepatitis (inflammation of the liver) due to excessive intake of alcohol. It is usually found in association with fatty liver, an early stage of alcoholic liver disease, and may contribute to the progression of fibrosis, leading to cirrhosis. Signs and symptoms of alcoholic hepatitis include jaundice, ascites (fluid accumulation in the abdominal cavity), fatigue and hepatic encephalopathy (brain dysfunction due to liver failure). Mild cases are self-limiting, but severe cases have a high risk of death. Severe cases may be treated with glucocorticoids.
CDA type I is characterized by moderate to severe anemia. It is usually diagnosed in childhood or adolescence, although in some cases, the condition can be detected before birth.
The enzymes that are defective in GS - UDP glucuronosyltransferase 1 family, polypeptide A1 (UGT1A1) - are also responsible for some of the liver's ability to detoxify certain drugs. For example, Gilbert's syndrome is associated with severe diarrhea and neutropenia in patients who are treated with irinotecan, which is metabolized by UGT1A1.
While paracetamol (acetaminophen) is not metabolized by UGT1A1, it is metabolized by one of the other enzymes also deficient in some people with GS. A subset of people with GS may have an increased risk of paracetamol toxicity.