Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
It is sometimes possible to correct the problem with surgery, though this has high failure rates for treatment of post-traumatic radioulnar synostosis.
Leri-Weill dyschondrosteosis is a pseudoautosomal dominant disorder which occurs more frequently in females and is due to a mutation, deletion or duplication of the SHOX gene. The SHOX gene plays a particularly important role in the growth and maturation of bones in the arms and legs. The SHOX gene is located within band Xp22.3 of the pseudoautosomal region of the X chromosome, which escapes X-inactivation. Homozygous SHOX gene mutations result in Langer mesomelic dysplasia.
Radial dysplasia, also known as radial club hand or radial longitudinal deficiency, is a congenital difference occurring in a longitudinal direction resulting in radial deviation of the wrist and shortening of the forearm. It can occur in different ways, from a minor anomaly to complete absence of the radius, radial side of the carpal bones and thumb. Hypoplasia of the distal humerus may be present as well and can lead to stiffnes of the elbow. Radial deviation of the wrist is caused by lack of support to the carpus, radial deviation may be reinforced if forearm muscles are functioning poorly or have abnormal insertions. Although radial longitudinal deficiency is often bilateral, the extent of involvement is most often asymmetric.
The incidence is between 1:30,000 and 1:100,000 and it is more often a sporadic mutation rather than an inherited condition. In case of an inherited condition, several syndromes are known for an association with radial dysplasia, such as the cardiovascular Holt-Oram syndrome, the gastrointestinal VATER syndrome and the hematologic Fanconi anemia and TAR syndrome. Other possible causes are an injury to the apical ectodermal ridge during upper limb development, intrauterine compression, or maternal drug use (thalidomide).
Post-traumatic cases are most likely to develop following surgery for a forearm fracture, this is more common with high-energy injuries where the bones are broken into many pieces (comminuted). It can also develop following soft tissue injury to the forearm where there is haematoma formation.
There are few good estimates of prevalence for pes cavus in the general community. While pes cavus has been reported in between 2 and 29% of the adult population, there are several limitations of the prevalence data reported in these studies. Population-based studies suggest the prevalence of the cavus foot is approximately 10%.
It is a congenital subluxation or dislocation of the ulna's distal end, due to malformation of the bones. Sometimes, minor abnormalities of other bone structures, often caused by disease or injury, such as a fracture of the distal end of the radius with upward displacement of the distal fragment. The deformity varies in degree from a slight protrusion of the lower end of the ulna, to complete dislocation of the inferior radio-ulnar joint with marked radial deviation of the hand. Severe deformities are associated with congenital absence or hypoplasia of the radius.
The male:female rate of this disorder is 1:4. The incidence is unknown, and there is no described racial predominance. Even though Madelung's Deformity is considered a congenital disorder, symptoms sometimes aren't seen until adulthood. In most cases, symptoms find their onset during midchildhood. At this age, the relatively slower growth of the ulnar and palmar part of the radius, leads to an increasingly progressive deformity. Pain and deformity are the main symptoms patients present with. Typical clinical presentation consists of a short forearm, anterior-ulnar bow of the radius and a forward subluxation of the hand on the forearm. As mentioned before, the severity of the disorder varies greatly, which also leads to a spectrum of presentation.
Pes cavus may be hereditary or acquired, and the underlying cause may be neurological, orthopedic, or neuromuscular. Pes cavus is sometimes—but not always—connected through Hereditary Motor and Sensory Neuropathy Type 1 (Charcot-Marie-Tooth disease) and Friedreich's Ataxia; many other cases of pes cavus are natural.
The cause and deforming mechanism underlying pes cavus is complex and not well understood. Factors considered influential in the development of pes cavus include muscle weakness and imbalance in neuromuscular disease, residual effects of congenital clubfoot, post-traumatic bone malformation, contracture of the plantar fascia, and shortening of the Achilles tendon.
Among the cases of neuromuscular pes cavus, 50% have been attributed to Charcot-Marie-Tooth disease, which is the most common type of inherited neuropathy with an incidence of 1 per 2,500 persons affected. Also known as Hereditary Motor and Sensory Neuropathy (HMSN), it is genetically heterogeneous and usually presents in the first decade of life with delayed motor milestones, distal muscle weakness, clumsiness, and frequent falls. By adulthood, Charcot-Marie-Tooth disease can cause painful foot deformities such as pes cavus. Although it is a relatively common disorder affecting the foot and ankle, little is known about the distribution of muscle weakness, severity of orthopaedic deformities, or types of foot pain experienced. There are no cures or effective courses of treatment to halt the progression of any form of Charcot-Marie-Tooth disease.
The development of the cavus foot structure seen in Charcot-Marie-Tooth disease has been previously linked to an imbalance of muscle strength around the foot and ankle. A hypothetical model proposed by various authors describes a relationship whereby weak evertor muscles are overpowered by stronger invertor muscles, causing an adducted forefoot and inverted rearfoot. Similarly, weak dorsiflexors are overpowered by stronger plantarflexors, causing a plantarflexed first metatarsal and anterior pes cavus.
Pes cavus is also evident in people without neuropathy or other neurological deficit. In the absence of neurological, congenital, or traumatic causes of pes cavus, the remaining cases are classified as being ‘idiopathic’ because their aetiology is unknown.
The etiology of the Galeazzi fracture is thought to be a fall that causes an axial load to be placed on a hyperpronated forearm. However, researchers have been unable to reproduce the mechanism of injury in a laboratory setting.
After the injury, the fracture is subject to deforming forces including those of the brachioradialis, pronator quadratus, and thumb extensors, as well as the weight of the hand. The deforming muscular and soft-tissue injuries that are associated with this fracture cannot be controlled with plaster immobilization.
Distal radius fractures are the most common fractures seen in adults, with incidence in females outnumbering incidence in males by a factor of 2-3. Men who sustain distal radius fractures are usually younger, generally in their fifth decade (vs. seventh decade in females). The elderly are more susceptible because of the osteopenia and osteoporosis commonly seen in this age group. The majority of these fractures are extra-articular (i.e. not involving the joint).
This is also a common injury in children which may involve the growth plate (Salter-Harris fracture).
In young adults, the injury is often severe as a greater force is necessary to produce the injury.
Olecranon fractures are rare in children, constituting only 5 to 7% of all elbow fractures. This is because in early life, olecranon is thick, short and much stronger than the lower extremity of the humerus.
However, olecranon fractures are a common injury in adults. This is partly due to its exposed position on the point of the elbow.
Colles fractures occur in all age groups, although certain patterns follow an age distribution.
- In the elderly, because of the weaker cortex, the fracture is more often extra-articular.
- Younger individuals tend to require a higher energy force to cause the fracture and tend to have more complex intra-articular fractures. In children with open epiphyses, an equivalent fracture is the "epiphyseal slip", as can be seen in other joints, such as a slipped capital femoral epiphysis in the hip. This is a Salter I or II fracture with the deforming forces directed through the weaker epiphyseal plate.
- More common in women because of post-menopausal osteoporosis.
In cases of a minor deviation of the wrist, treatment by splinting and stretching alone may be a sufficient approach in treating the radial deviation in RD. Besides that, the parent can support this treatment by performing passive exercises of the hand. This will help to stretch the wrist and also possibly correct any extension contracture of the elbow. Furthermore, splinting is used as a postoperative measure trying to avoid a relapse of the radial deviation.
This injury has also been reported in babies younger than six months and in older children up to the preteen years. There is a slight predilection for this injury to occur in girls and in the left arm. The classic mechanism of injury is longitudinal traction on the arm with the wrist in pronation, as occurs when the child is lifted up by the wrist. There is no support for the common assumption that a relatively small head of the radius as compared to the neck of the radius predisposes the young to this injury.
A pulled elbow, also known as a radial head subluxation, is when the ligament that wraps around the radial head slips off. Often a child will hold their arm against their body with the elbow slightly bent. They will not move the arm as this results in pain. Touching the arm, without moving the elbow, is usually not painful.
A pulled elbow typically results from a sudden pull on an extended arm. This may occur when lifting or swinging a child by the arms. The underlying mechanism involves slippage of the annular ligament off of the head of the radius followed by the ligament getting stuck between the radius and humerus. Diagnosis is often based on symptoms. Xrays may be done to rule out other problems.
Prevention is by avoiding potential causes. Treatment is by reduction. Moving the forearm into a palms down position with straitening at the elbow appears to be more effect than moving it into a palms up position followed by bending at the elbow. Following a successful reduction the child should return to normal within a few minutes. A pulled elbow is common. It generally occurs in children between the ages of 1 and 4 years old, though it can happen up to 7 years old.
The exact cause of Kienböck's is not known, though there are thought to be a number of factors predisposing a person to Kienböck's.
Recent studies have made a correlation between Kienböck's sufferers and Western European ancestry, but no definitive link can be positively confirmed.
The necrosis of the lunate bone can frequently be traced to a trauma to the wrist, like a compound fracture, which could cause the lunate's blood supply to be interrupted. Blood flows to the lunate through several arteries, each supplying a percentage. When one of these pathways is severed, the likelihood the patient will develop necrosis increases.
Despite a preponderance of evidence, no particular cause has been conclusively verified.
Data exists on the internet that most people suffering from Kienböck's are affected in their dominant hand, though about one-third of sufferers report the condition in their non-dominant hand. In very few cases have there been people that have acquired it in both wrists.
Kienböck's disease is classified as a "rare disorder," meaning that it affects fewer than 200,000 people in the U.S. population.
Many Kienböck's patients are frustrated by the lack of consensus among hand surgeons about optimal treatments for Kienböck's. No matter what the disease's stage of progression, there is no one best treatment, and the decision is often based partially, or even mostly, on incidental factors such as the patient's pain tolerance, the patient's desire to return to active use of the hand (such as in manual occupations), and the surgeon's level of expertise with different treatments.
Though, since each case of Kienböck's is different, the makeup of the wrist and arm bones are important factors which are individualized to each patient. Therefore, one surgery will never be able to solve all the problems associated with the disease. Thus, no consensus can be reached among surgeons.
SLAC and SNAC are both caused by injury, for example a fall on an extended hand. SLAC is caused by rupture of the scapholunate ligament, SNAC is caused by a scaphoid fracture which does not heal and because of that will develop in a non-union fracture. SLAC is more common than SNAC; 55% of the patients with wrist osteoarthritis has a SLAC wrist. Although they have a different underlying pathology, they both lead to abnormal wrist kinematics which will eventually lead to osteoarthritis of the wrist.
In children the outcome of distal radius fracture treatment in casts is usually very successful with healing and return to normal function expected. Some residual deformity is common but this often remodels as the child grows. In the elderly, distal radius fractures heal and may result in adequate function following non-operative treatment. A large proportion of these fractures occur in elderly people that may have less requirement for strenuous use of their wrists. Some of these patients tolerate severe deformities and minor loss of wrist motion very well even without reduction of the fracture. In this low demand group only a short period of immobilization is indicated as rapid mobilization improves functional outcome.
In younger patients the injury requires greater force and results in more displacement particularly to the articular surface. Unless an accurate reduction of the joint surface is obtained, these patients are very likely to have long term symptoms of pain, arthritis, and stiffness.
Galeazzi fractures are best treated with open reduction of the radius and the distal radio-ulnar joint. It has been called the "fracture of necessity," because it necessitates open surgical treatment in the adult. Nonsurgical treatment results in persistent or recurrent dislocations of the distal ulna. However, in skeletally immature patients such as children, the fracture is typically treated with closed reduction.
Ulnar deviation, also known as ulnar drift, is a hand deformity in which the swelling of the metacarpophalangeal joints (the big knuckles at the base of the fingers) causes the fingers to become displaced, tending towards the little finger. Its name comes from the displacement toward the ulna (as opposed to radial deviation, in which fingers are displaced toward the radius). Ulnar deviation is likely to be a characteristic of rheumatoid arthritis, more than of osteoarthritis. Consideration should also be given to Pigmented Villonodular Synovitis, in the setting of ulnar deviation and metacarpophalangeal synovitis.
Ulnar deviation is also a physiological movement of the wrist, where the hand including the fingers move towards the ulna.
Ulnar deviation is a disorder in which flexion by ulnar nerve innervated muscles is intact while flexion on the median nerve side is not.
Fibular hemimelia or longitudinal fibular deficiency is "the congenital absence of the fibula and it is the most common congenital absence of long bone of the extremities." It is the shortening of the fibula at birth, or the complete lack thereof. In humans, the disorder can be noted by ultrasound in utero to prepare for amputation after birth or complex bone lengthening surgery. The amputation usually takes place at six months with removal of portions of the legs to prepare them for prosthetic use. The other treatments which include repeated corrective osteotomies and leg-lengthening surgery (Ilizarov apparatus) are costly and associated with residual deformity.
The cause of fibular hemimelia is unclear. Purportedly, there have been some incidents of genetic distribution in a family; however, this does not account for all cases. Maternal viral infections, embryonic trauma, teratogenic environmental exposures or vascular dysgenesis (failure of the embryo to form a satisfactory blood supply) between four and seven weeks gestation are considered possible causes.
In an experimental mouse model, change in the expression of a homeobox gene led to similar, but bilateral, fibular defects.
The radial head fracture is usually managed by open reduction internal fixation; if the fracture is too comminuted, a radial head implant can be used. Excision of the radial head should be avoided, as the radius will migrate proximally leading to wrist pain and loss of pronation and supination of the wrist. Delayed treatment of the radial head fracture will also lead to proximal migration of the radius.
The distal radio-ulnar joint dislocation can be reduced by supination of the forearm, and may be pinned in place for 6 weeks to allow healing of the interosseous membrane.
In the treatment of stage II wrist osteoarthritis, there are two treatment options that have proved to be most successful.
The first treatment option is proximal row carpectomy. During this surgical intervention the proximal row of the carpal bones is removed (scaphoid, lunate, triquetrum, pisiform). It is important that the radioscaphocapitate ligament is left intact, because if the ligament is not preserved the capitate bone will translate to the ulnar side of the wrist and move away from the distal radius. The new formed joint between the capitate and the lunate fossa of the distal radius is not as congruent as the former scaphoid-lunate-radius joint, however the results of proximal row carpectomy are generally excellent. In patients older than 40 years proximal row carpectomy is preferred because these patients have a small chance of developing osteoarthritis in the new formed capitate-radial joint during their remaining life.
Patients younger than 40 years have a big chance to develop osteoarthritis in the radiocapitate joint. These patients have longer to live, therefore the incongruence of the joint will exist for a longer time. Thus, in this patient population four-corner arthrodesis is the treatment of first choice. The capitate, lunate, hamate and triquetrum are bounded together in this procedure and the scaphoid is excised. Before the arthrodesis is executed, the lunate must be reduced out of DISI position. Because the radiolunate joint is typically preserved in stage II SLAC and SNAC wrists, this joint can be the only remaining joint of the proximal wrist.
Both procedures are often combined with wrist denervation, as described in the text of treatment stage I.
Removable splints result in better outcomes than casting in children with torus fractures of the distal radius.
The Essex-Lopresti fracture is a fracture of the radial head with concomitant dislocation of the distal radio-ulnar joint and disruption of the interosseous membrane. The injury is named after Peter Essex-Lopresti who described it in 1951.