Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The prognosis is poor; affected individuals are either stillborn or die shortly after birth. The longest survival reported in literature is of 134 days.
This syndrome is transmitted as an autosomal recessive disorder and there is a risk for recurrence of 25% in future pregnancies.
Genetic
- Inborn errors of metabolism
1. Congenital disorder of glycosylation
2. Mitochondrial disorders
3. Peroxisomal disorder
4. Glucose transporter defect
5. Menkes disease
6. Congenital disorders of amino acid metabolism
7. Organic acidemia
Syndromes
- Contiguous gene deletion
1. 17p13.3 deletion (Miller–Dieker syndrome)
- Single gene defects
1. Rett syndrome (primarily girls)
2. Nijmegen breakage syndrome
3. X-linked lissencephaly with abnormal genitalia
4. Aicardi–Goutières syndrome
5. Ataxia telangiectasia
6. Cohen syndrome
7. Cockayne syndrome
Acquired
- Disruptive injuries
1. Traumatic brain injury
2. Hypoxic-ischemic encephalopathy
3. Ischemic stroke
4. Hemorrhagic stroke
- Infections
1. Congenital HIV encephalopathy
2. Meningitis
3. Encephalitis
- Toxins
1. Lead poisoning
2. Chronic renal failure
- Deprivation
1. Hypothyroidism
2. Anemia
3. Congenital heart disease
4. Malnutrition
Genetic factors may play a role in causing some cases of microcephaly. Relationships have been found between autism, duplications of chromosomes, and macrocephaly on one side. On the other side, a relationship has been found between schizophrenia, deletions of chromosomes, and microcephaly. Moreover, an association has been established between common genetic variants within known microcephaly genes ("MCPH1, CDK5RAP2") and normal variation in brain structure as measured with magnetic resonance imaging (MRI)i.e., primarily brain cortical surface area and total brain volume.
The spread of Aedes mosquito-borne Zika virus has been implicated in increasing levels of congenital microcephaly by the International Society for Infectious Diseases and the US Centers for Disease Control and Prevention. Zika can spread from a pregnant woman to her fetus. This can result in other severe brain malformations and birth defects. A study published in The New England Journal of Medicine has documented a case in which they found evidence of the Zika virus in the brain of a fetus that displayed the morphology of microcephaly.
Isolated
1. Familial (autosomal recessive) microcephaly
2. Autosomal dominant microcephaly
3. X-linked microcephaly
4. Chromosomal (balanced rearrangements and ring chromosome)
Syndromes
- Chromosomal
1. Poland syndrome
2. Down syndrome
3. Edward syndrome
4. Patau syndrome
5. Unbalanced rearrangements
- Contiguous gene deletion
1. 4p deletion (Wolf–Hirschhorn syndrome)
2. 5p deletion (Cri-du-chat)
3. 7q11.23 deletion (Williams syndrome)
4. 22q11 deletion (DiGeorge syndrome)
- Single gene defects
1. Smith–Lemli–Opitz syndrome
2. Seckel syndrome
3. Cornelia de Lange syndrome
4. Holoprosencephaly
5. Primary microcephaly 4
6. Wiedemann-Steiner syndrome
Acquired
- Disruptive injuries
1. Ischemic stroke
2. Hemorrhagic stroke
3. Death of a monozygotic twin
- Vertically transmitted infections
1. Congenital cytomegalovirus infection
2. Toxoplasmosis
3. Congenital rubella syndrome
4. Zika virus
- Drugs
1. Fetal hydantoin syndrome
2. Fetal alcohol syndrome
Other
1. Radiation exposure to mother
2. Maternal malnutrition
3. Maternal phenylketonuria
4. Poorly controlled gestational diabetes
5. Hyperthermia
6. Maternal hypothyroidism
7. Placental insufficiency
Treatment with isotretinoin may induce substantial resolution of skin lesions, but the risk of secondary infection remains.
CHILD syndrome is not fatal unless there are problems with the internal organs. The most common causes of early death in people with the syndrome are cardiovascular malformations. However, central nervous system, skeletal, kidney, lung, and other visceral defects also contribute significantly.
CHILD syndrome occurs almost exclusively in females. Only 2 known cases have been reported in males, one having a normal 46,XY karyotype, suggesting an early postzygotic somatic mutation.
Neu–Laxova syndrome (also known as Neu syndrome or Neu-Povysilová syndrome, abbreviated as NLS) is a rare autosomal recessive disorder characterized by severe intrauterine growth restriction and multiple congenital malformations. Neu–Laxova syndrome is a very severe disorder, leading to stillbirth or neonatal death. It was first described by Dr. Richard Neu in 1971 and Dr. Renata Laxova in 1972 as a lethal disorder in siblings with multiple malformations. Neu–Laxova syndrome is an extremely rare disorder with less than 100 cases reported in medical literature.
Zunich–Kaye syndrome, also known as Zunich neuroectodermal syndrome, is a rare congenital ichthyosis first described in 1983. It is also referred to as CHIME syndrome, after its main symptoms (colobomas, heart defects, ichthyosiform dermatosis, intellectual disability, and either ear defects or epilepsy). It is a congenital syndrome with only a few cases studied and published.
Sjögren–Larsson syndrome (SLS) is an autosomal recessive form of ichthyosis apparent at birth.
Sjögren–Larsson syndrome is a rare autosomal, recessive, neurocutaneous disease. This disease can be identified by a triad of medical disorders. The first is ichthyosis, which is a buildup of skin to form a scale-like covering that causes dry skin and other problems. The second identifier is spastic paraplegia which is characterized by leg spasms. The final identifier is intellectual delay.
The gene of SLS is found on chromosome 17. In order for a child to receive SLS both parents must be carriers of the SLS gene. If they are carriers their child has a ¼ chance of getting the disease. In 1957 Sjogren and Larsson proposed that the Swedes with the disease all descended from a common ancestor 600 years ago. Today only 30–40 persons in Sweden have this disease.
It is associated with a deficiency of the enzyme "fatty aldehyde dehydrogenase". At least 11 distinct mutations have been identified.
Most cases are X-linked recessive but there may be as many as three types. As well as a classical X-linked form, there is another type where females are partially affected and another where females have full IFAP symptoms. The gene or genes causing this disease are not known.
IFAP syndrome is an extremely rare genetic syndrome. It is also known as Ichthyosis follicularis, alopecia, and photophobia syndrome or simply ichthyosis follicularis. It is extremely rare: there were only 10 known cases (all male) in 1998.
Congenital Ichthyosiform Erythroderma (CIE), also known as Nonbullous congenital ichthyosiform erythroderma is a rare type the ichthyosis family of skin diseases which occurs in 1 in 200,000 to 300,000 births.
Senter syndrome (also known as "Desmons' syndrome") is a cutaneous condition characterized by similar skin changes and congenital hearing impairment to keratitis–ichthyosis–deafness syndrome, but is associated with glycogen storage leading to hepatomegaly, hepatic cirrhosis, growth failure and mental retardation.
Rud syndrome is a poorly characterized disorder, probably of X-linked recessive inheritance, named after Einar Rud who described 2 patients with the case in 1927 and 1929. It was argued that all reported cases of Rud syndrome are genetically heterogeneous and significantly differ from the original case reports of Rud and that the designation Rud syndrome should be eliminated and that the patients with such diagnosis should be reassigned to other syndromes, such as Refsum disease and Sjögren-Larsson syndrome.Some consider Rud syndrome and Sjögren-Larsson syndrome the same entity and that Rud syndrome doesn't exist.
Frequencies of this disease are the greatest in Norway with a few Finnish cases have also having been noted to date. Some cases have been found in other ethnicities such as in people of Indian or Japanese descent as well as a north Italian family. These cases are scattered and there are potentially more under reported cases as this disease is often under diagnosed for other cutaneous diseases. It is most prevalent in a defined region in the middle of Norway and Sweden with a heterozygote carrier frequency of 1 in 50.
Camisa disease (or Vohwinkel variant with ichthyosis) is the variant form of Vohwinkel syndrome, characterized by ichthyosis and normal hearing.
It is associated with loricrin.
It was characterized in 1984 and 1988.
Trichothiodystrophy (TTD) is an autosomal recessive inherited disorder characterised by brittle hair and intellectual impairment. The word breaks down into "tricho" – "hair", "thio" – "sulphur", and "dystrophy" – "wasting away" or literally "bad nourishment". TTD is associated with a range of symptoms connected with organs of the ectoderm and neuroectoderm. TTD may be subclassified into four syndromes: Approximately half of all patients with trichothiodystrophy have photosensitivity, which divides the classification into syndromes with or without photosensitivity; BIDS and PBIDS, and IBIDS and PIBIDS. Modern covering usage is TTD-P (photosensitive), and TTD.
Hystrix-like ichthyosis–deafness syndrome (also known as "HID syndrome") is a cutaneous condition characterized by a keratoderma.
Dennie–Marfan syndrome is a syndrome in which there is association of spastic paraplegia of the lower limbs and mental retardation in children with congenital syphilis. Both sexes are affected, and the onset of the disease can be acute or insidious, with slow progression from weakness to quadriplegia. Epilepsy, cataract, and nystagmus may be also be found.
The syndrome was described by Charles Clayton Dennie in 1929, and Antoine Marfan in 1936.
Eosinophils are a kind of a white blood cell which help protect the body from certain infections and involved in allergic responses. Eosionphelia is an abnormal increase of eosinophils in tissue, blood or both and is present in individuals born with this syndrome.
While inclusion criteria for Rud syndrome have varied considerably, the major manifestations includes congenital ichthyosis, hypogonadism, small stature, mental retardation, and epilepsy. Ocular findings were inconsistently reported and included strabismus, blepharoptosis, blepharospasm, glaucoma, cataract, nystagmus, and retinitis pigmentosa. Other systemic includes metabolic, bony, neurologic, and muscular abnormalities.
Neonatal ichthyosis–sclerosing cholangitis syndrome (also known as "NISCH syndrome" and "ichthyosis–sclerosing cholangitis syndrome") is a cutaneous condition caused by mutations in the Claudin 1 gene.
Features of TTD can include photosensitivity, icthyosis, brittle hair and nails, intellectual impairment, decreased fertility and short stature. The acronyms PIBIDS, IBIDS, BIDS and PBIDS give the initials of the words involved. BIDS syndrome, also called Amish brittle hair brain syndrome and hair-brain syndrome, is an autosomal recessive inherited disease. It is nonphotosensitive. BIDS is characterized by brittle hair, intellectual impairment, decreased fertility, and short stature. There is a photosensitive syndrome, PBIDS.
BIDS is associated with the gene MPLKIP (TTDN1).
IBIDS syndrome, following the acronym from ichthyosis, brittle hair and nails, intellectual impairment and short stature, is the Tay syndrome or sulfur-deficient brittle hair syndrome, first described by Tay in 1971. (Chong Hai Tay was the Singaporean doctor who was the first doctor in South East Asia to have a disease named after him). Tay syndrome should not be confused with the Tay-Sachs disease. It is an autosomal recessive congenital disease. In some cases, it can be diagnosed prenatally. IBIDS syndrome is nonphotosensitive.
The photosensitive form is referred to as PIBIDS, and is associated with ERCC2 and ERCC3.
This is rare and is usually due to mutations in the R-spondin 4 (RSPO4) gene which is located on the short arm of chromosome 20 (20p13). Clinically it is manifest by the absence (anonychia) or hypoplasia (hyponuchia) of finger- and/or toenails.