Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Individuals experiencing episodic bleeding as a result of congenital dysfibrinogenemia should be treated at a center specialized in treating hemophilia. They should avoid all medications that interfere with normal platelet function. During bleeding episodes, treatment with fibrinogen concentrates or in emergencies or when these concentrates are unavailable, infusions of fresh frozen plasma and/or cryoprecipitate (a fibrinogen-rich plasma fraction) to maintain fibrinogen activity levels >1 gram/liter. Tranexamic acid or fibrinogen concentrates are recommended for prophylactic treatment prior to minor surgery while fibrinogen concentrates are recommended prior to major surgery with fibrinogen concentrates usage seeking to maintain fibrinogen activity levels at >1 gram/liter. Women undergoing vaginal or Cesarean child birth should be treated at a hemophilia center with fibrinogen concentrates to maintain fibrinogen activity levels at 1.5 gram/liter. The latter individuals require careful observation for bleeding during their post-partum periods.
Individuals experiencing episodic thrombosis as a result of congenital dysfibrinogenemia should also be treated at a center specialized in treating hemophilia using antithrombotic agents. They should be instructed on antithrombotic behavioral methods fur use in high risk situations such as long car rides and air flights. Venous thrombosis should be treated with low molecular weight heparin for a period that depends on personal and family history of thrombosis events. Prophylactic treatment prior to minor surgery should avoid fibrinogen supplementation and use prophylactic anticoagulation measures; prior to major surgery, fibrinogen supplementation should be used only if serious bleeding occurs; otherwise, prophylactic anticoagulation measures are recommended.
Treatment of asymptomatic congenital dysfibrinogenemia depends in part on the expectations of developing bleeding and/or thrombotic complications as estimated based on the history of family members with the disorder and, where available, determination of the exact mutation causing the disorder plus the propensity of the particular mutation type to develop these complications. In general, individuals with this disorder require regular follow-up and multidiscipline management prior to surgery, pregnancy, and giving childbirth. Women with the disorder appear to have an increased rate of miscarriages and all individuals with fibrinogen activity in clotting tests below 0.5 grams/liter are prone to bleeding and spontaneous abortions. Women with multiple miscarriages and individuals with excessively low fibrinogen activity levels should be considered for prophylaxis therapy with fibrinogen replacement during pregnancy, delivery, and/or surgery.
All individuals with mutations causing fibrinogen storage disease have low blood fibrinogen levels but usually lack severe bleeding episodes, thrombotic episodes or liver disease. Individuals that do have fibrinogen storage disease often come to attention either because they have close relatives with the disease, are found to be hypofibrinogenmic during routing testing, or exhibit clinical (e.g. jaundice) or laboratory (e.g. elevated blood levels of liver enzymes) evidence of liver disease. Unlike other forms of congenital hypofibrinogenemia, a relatively high percentage of individuals with fibrinogen storage disease have been diagnosed in children of very young age.
Congenital hypofibrinogenemia is a rare disorder in which one of the two genes responsible for producing fibrinogen, a critical blood clotting factor, is unable to make a functional fibrinogen glycoprotein because of an inherited mutation. In consequence, liver cells, the normal site of fibrinogen production, make small amounts of this critical coagulation protein, blood levels of fibrinogen are low, and individuals with the disorder may suffer a coagulopathy, i.e. a diathesis or propensity to experience episodes of abnormal bleeding. However, individuals with congenital hypofibringenemia may also suffer episodes of abnormal blood clot formation, i.e. thrombosis. This seemingly paradoxical propensity to develop thrombosis in a disorder causing a decrease in a critical protein for blood clotting may be due to the function of fibrin (the split product of fibrinogen that is the basis for forming blood clots) to promote the lysis or desolution of blood clots. Lower levels of fibrin may reduce the lysis of early fibrin strand depositions and thereby allow these depositions to develop into clots.
Congenital hypofibrinogenemia must be distinguished from: a) congenital afibrinogenemia, a rare disorder in which blood fibrinogen levels are either exceedingly low or undetectable due to mutations in both fibrinogen genes; b) congenital hypodysfibrinogenemia, a rare disorder in which one or more genetic mutations cause low levels of blood fibrinogen, at least some of which is dysfunctional and thereby contributes to excessive bleeding; and c) acquired hypofibrinogenemia, a non-hereditary disorder in which blood fibrinogen levels are low because of e.g. severe liver disease or because of excessive fibrinogen consumption resulting from, e.g. disseminated intravascular coagulation.
Certain gene mutations causing congenital hypfibrinogenemia disrupt the ability of liver cells to secrete fibrinogen. In these instances, the un-mutated gene maintains blood fibrinogen at reduce levels but the mutated gene produces a fibrinogen that accumulates in liver cells sometimes to such extents that it becomes toxic. In the latter cases, liver disease may ensue in a syndrome termed fibrinogen storage disease.
Fibrinogen disorders are set of hereditary or acquired abnormalities in the quantity and/or quality of circulating fibrinogens. The disorders may lead to pathological bleeding and/or blood clotting or the deposition of fibrinogen in the liver, kidneys, or other organs and tissues. These disorders include:
- Congenital afibrinogenemia, an inherited blood disorder in which blood does not clot normally due to the lack of fibrinogen; the disorder causes abnormal bleeding and thrombosis.
- Congenital hypofibrinogenemia, an inherited disorder in which blood may not clot normally due to reduced levels of fibrinogen; the disorder may cause abnormal bleeding and thrombosis.
- Fibringogen storage disease, a form of congenital hypofibrinogenemia in which specific hereditary mutations in fibrinogen cause it to accumulate in, and damage, liver cells. The disorder may lead to abnormal bleeding and thrombosis but also to cirrhosis.
- Congenital dysfibrinogenemia, an inherited disorder in which normal levels of fibrinogen composed at least in part of a dysfunctional fibrinogen may cause abnormal bleeding and thrombosis.
- Hereditary fibrinogen Aα-Chain amyloidosis, a form of dysfibrinogenemia in which certain fibrinogen mutations cause blood fibrinogen to accumulate in the kidney and cause one type of familial renal amyloidosis; the disorder is not associated with abnormal bleeding or thrombosis.
- Acquired dysfibrinogenemia, a disorder in which normal levels of fibrinogen are composed at least in part of a dysfunctional fibrinogen due to an acquired disorder (e.g. liver disease) that leads to the synthesis of an incorrectly glycosylated (i.e. wrong amount of sugar residues) added to an otherwise normal fibrinogen. The incorrectly glycosalated fibrinogen is dysfunctional and may cause pathological episodes of bleeding and/or blood clotting.
- Congenital hypodysfibrinogenemia, an inherited disorder in which low levels of fibrinogen composed at least in part of a dysfunctional fibrinogen may cause pathological episodes of bleeding or blood clotting.
- Cryofibrinogenemia, an acquired disorder in which fibrinogen precipitates at cold temperatures and may lead to the intravascular precipitation of fibrinogen, fibrin, and other circulating proteins thereby causing the infarction of various tissues and bodily extremities.
Blood relatives of the proband case should be evaluated for the presence of hypodysfibrinogenemia. Individuals with the disorder need to be advised on its inheritance, complications, and preventative measures that can be taken to avoid bleeding and/or thrombosis. Since >80% of individuals may develop bleeding or thrombosis complications of the disorder, asymptomatic individuals diagnosed with hydposyfibrinogenemia are best handled at a specialized center in order to benefit from multidisciplinary management.
Measures to prevent and/or treat complications of hypodysfibrinogenemia should be tailored to the personal and family history of the individual by a specialized center. Individuals with a personal or family history of bleeding are considered to be of low risk of bleeding when their functional fibrinogen levels are >1 gram/liter for major surgery, >0.5 gram/liter for minor surgery, >0.5 to 1-2 gram/liter for spontaneous bleeding (depending on its severity), >0.5 to > 1 gram/liter for the first two trimesters of pregnancy, and >1 to <2 gram/liter for the last trimester of pregnancy and postpartum period. Functional fibrinogen below these levels should be treated preferably with fibrinogen concentrate or if not available, fibrinogen-rich cryoprecipitate or plasma to attain low risk levels of functional fibrinogen. Antifibrinolytic drugs such as tranexamic acid or (ε-aminocaproic acid) may be considered as an alternative preventative or therapeutic treatments in cases of minor surgery, dental extractions, mucosal bleeding, or other episodes of mild bleeding. In individuals with a personal or family history of thrombosis, should be considered for long-term anticoagulation drugs such as low molecular weight heparin, coumadin, or rivaroxaban.
Circulating fibrinogen is a glycoprotein made of two trimers each of which is composed of three polypeptide chains, Aα (also termed α) encoded by the "FGA" gene, Bβ (also termed β) encoded by the "FGB" gene, and γ encoded by the "FGG" gene. All three genes are located on the long or "p" arm of human chromosome 4 (at positions 4q31.3, 4q31.3, and 4q32.1, respectively) and are the sites where mutations occur that code for a dysfunctional fibrinogen and/or reduced fibrinogen levels which are the cause of congenital hypodysfibrinogenemia.
The condition is usually congenital, but sporadic cases have also been reported. It may be associated with other congenital defects, commonly with autosomal recessive polycystic kidney disease, the most severe form of PKD. Some suggest that these two conditions are one disorder with different presentation.
Basically classified by causative mechanism, types of congenital hemolytic anemia include:
- Genetic conditions of RBC Membrane
- Hereditary spherocytosis
- Hereditary elliptocytosis
- Genetic conditions of RBC metabolism (enzyme defects). This group is sometimes called "congenital nonspherocytic (hemolytic) anemia", which is a term for a congenital hemolytic anemia without spherocytosis, and usually excluding hemoglobin abnormalities as well, but rather encompassing defects of glycolysis in the erythrocyte.
- Glucose-6-phosphate dehydrogenase deficiency (G6PD or favism)
- Pyruvate kinase deficiency
- Aldolase A deficiency
- Hemoglobinopathies/genetic conditions of hemoglobin
- Sickle cell anemia
- Congenital dyserythropoietic anemia
- Thalassemia
Congenital hepatic fibrosis is an inherited fibrocystic liver disease associated with proliferation of interlobular bile ducts within the portal areas and fibrosis that do not alter hepatic lobular architecture. The fibrosis would affect resistance in portal veins leading to portal hypertension.
The various mutations may be responsible for the untimely initiation of apoptosis in myelocytes, producing their premature destruction. There may be, in addition, other underlying molecular/genetic changes producing DNA mutations and genome instability, which contribute to initiation and progression of this disease.
Regular administration of exogenous granulocyte colony-stimulating factor (filgrastim) clinically improves neutrophil counts and immune function and is the mainstay of therapy, although this may increase risk for myelofibrosis and acute myeloid leukemia in the long term.
Over 90% of SCN responds to treatment with granulocyte colony-stimulating factor (filgrastim), which has significantly improved survival.
Congenital hemolytic anemia (or hereditary hemolytic anemia) refers to hemolytic anemia which is primarily due to congenital disorders.
Congenital hypoplastic anemia (or constitutional aplastic anemia) is a type of aplastic anemia which is primarily due to a congenital disorder.
Associated genes include "TERC", "TERT", "IFNG", "NBS1", "PRF1", and "SBDS".
Examples include:
- Fanconi anemia
- Diamond-Blackfan anemia
Macrophage-activation syndrome (MAS) is a severe, potentially life-threatening, complication of several chronic rheumatic diseases of childhood. It occurs most commonly with systemic-onset juvenile idiopathic arthritis (SoJIA). In addition, MAS has been described in association with systemic lupus erythematosus (SLE), Kawasaki disease, and adult-onset Still's disease. It is thought to be closely related and pathophysiologically very similar to reactive (secondary) hemophagocytic lymphohistiocytosis (HLH). The incidence of MAS is unknown as there is a wide spectrum of clinical manifestations, and episodes may remain unrecognized.
In many cases a trigger is identified, often a viral infection, or a medication. There is uncontrolled activation and proliferation of macrophages, and T lymphocytes, with a marked increase in circulating cytokines, such as IFN-gamma, and GM-CSF. The underlying causative event is unclear, and is the subject of ongoing research. In many cases of MAS, a decreased natural killer cell (NK-cell) function is found.
The majority of patients with neurocutaneous melanosis are asymptomatic and therefore have a good prognosis with few complications. Most are not diagnosed, so definitive data in not available. For symptomatic patients, the prognosis is far worse. In patients without the presence of melanoma, more than 50% die within 3 years of displaying symptoms. While those with malignancy have a mortality rate of 77% with most patients displaying symptoms before the age of 2.
The presence of a Dandy-Walker malformation along with neurocutaneous melanosis, as occurs in 10% of symptomatic patients, further deteriorates prognosis. The median survival time for these patients is 6.5 months after becoming symptomatic.
Congenital lactic acidosis (CLA) is a rare disease caused by mutations in mitochondrial DNA (mtDNA) that affect the ability of cells to use energy and cause too much lactic acid to build up in the body, a condition called lactic acidosis.
According to a study in cyanotic congenital heart disease (CCHD) in Sohag University, Upper Egypt. 50 neonates were diagnosed as suffering from cyanotic congenital heart disease (CCHD), they concluded that cyanotic congenital heart disease (CCHD) frequency was significant (9.5%) with D-TGA being the commonest type. Majority of neonates with Cyanotic congenital heart disease (CCHD) showed survival with suitable management.
The cause of congenital hyperinsulinism has been linked to anomalies in nine different genes. The diffuse form of this condition is inherited via the autosomal recessive manner(though sometimes in "autosomal dominant").
Studies suggest that prenatal care for mothers during their pregnancies can prevent congenital amputation. Knowing environmental and genetic risks is also important. Heavy exposure to chemicals, smoking, alcohol, poor diet, or engaging in any other teratogenic activities while pregnant can increase the risk of having a child born with a congenital amputation. Folic acid is a multivitamin that has been found to reduce birth defects.
Current medical treatments result in survival of some longer than 10 years; in part this is because better diagnostic testing means early diagnosis and treatments. Older diagnosis and treatments resulted in published reports of median survival of approximately 5 years from time of diagnosis. Currently, median survival is 6.5 years. In rare instances, WM progresses to multiple myeloma.
The International Prognostic Scoring System for Waldenström’s Macroglobulinemia (IPSSWM) is a predictive model to characterise long-term outcomes. According to the model, factors predicting reduced survival are:
- Age > 65 years
- Hemoglobin ≤ 11.5 g/dL
- Platelet count ≤ 100×10/L
- B2-microglobulin > 3 mg/L
- Serum monoclonal protein concentration > 70 g/L
The risk categories are:
- Low: ≤ 1 adverse variable except age
- Intermediate: 2 adverse characteristics or age > 65 years
- High: > 2 adverse characteristics
Five-year survival rates for these categories are 87%, 68% and 36%, respectively. The corresponding median survival rates are 12, 8, and 3.5 years.
The IPSSWM has been shown to be reliable. It is also applicable to patients on a rituximab-based treatment regimen. An additional predictive factor is elevated serum lactate dehydrogenase (LDH).
Congenital chloride diarrhea (CCD, also congenital chloridorrhea or Darrow Gamble syndrome) is a genetic disorder due to an autosomal recessive mutation on chromosome 7. The mutation is in downregulated-in-adenoma (DRA), a gene that encodes a membrane protein of intestinal cells. The protein belongs to the solute carrier 26 family of membrane transport proteins. More than 20 mutations in the gene are known to date. A rare disease, CCD occurs in all parts of the world but is more common in some populations with genetic founder effects, most notably in Finland.
Cyanotic heart defect is a group-type of congenital heart defect (CHD) that occurs due to deoxygenated blood bypassing the lungs and entering the systemic circulation or a mixture of oxygenated and unoxygenated blood entering the systemic circulation. It is caused by structural defects of the heart (i.e.: right-to-left, bidirectional shunting, malposition of the great arteries), or any condition which increases pulmonary vascular resistance. The result being the development of collateral circulation.
There have been 30 cases of Marden-Walker Syndrome reported since 1966. The first case of this was in 1966 a female infant was diagnosed with blepharophimosis, joint contractures, arachnodactyly and growth development delay. She ended up passing at 3 months due to pneumonia.