Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
CDA type III is transmitted autosomal dominantly. The genetic cause of CDA type III is known to be a problem with the KIF23 gene, located on the long arm of chromosome 15 at a position designated 15q22.
Congenital dyserythropoietic anemia type III (CDA III) is a rare autosomal dominant disorder characterized by macrocytic anemia, bone marrow erythroid hyperplasia and giant multinucleate erythroblasts. New evidence suggests that this may be passed on recessively as well.
Photomutilation and transfusion dependent anemia are common complications. Liver disease is also observed in some cases. It has been reported that early childhood-onset haematological manifestations is a poor prognosis factor.
Congenital dyserythropoietic anemia (CDA) is a rare blood disorder, similar to the thalassemias. CDA is one of many types of anemia, characterized by ineffective erythropoiesis, and resulting from a decrease in the number of red blood cells (RBCs) in the body and a less than normal quantity of hemoglobin in the blood.
CDA type I is transmitted by both parents autosomal recessively and usually results from mutations in the CDAN1 gene. Little is known about the function of this gene, and it is unclear how mutations cause the characteristic features of CDA type I. Some people with this condition do not have identified mutations in the CDAN1 gene, leading researchers to believe that mutations in at least one other gene can also cause this form of the disorder.
CDA type I is characterized by moderate to severe anemia. It is usually diagnosed in childhood or adolescence, although in some cases, the condition can be detected before birth.
Congenital dyserythropoietic anemia type II (CDA II), or hereditary erythroblastic multinuclearity with positive acidified serum lysis test (HEMPAS) is a rare genetic anemia in humans characterized by hereditary erythroblastic multinuclearity with positive acidified serum lysis test.
Congenital dyserythropoietic anemia type IV is an autosomal dominant inherited red blood cell disorder characterized by ineffective erythropoiesis and hemolysis resulting in anemia. Circulating erythroblasts and erythroblasts in the bone marrow show various morphologic abnormalities. Affected individuals with CDAN4 also have increased levels of fetal hemoglobin.
Most pedigrees suggest an autosomal dominant mode of inheritance with incomplete penetrance. Approximately 10–25% of DBA occurs with a family history of disease.
About 25-50% of the causes of DBA have been tied to abnormal ribosomal protein genes. The disease is characterized by genetic heterogeneity, affecting different ribosomal gene loci: Exceptions to this paradigm have been demonstrated, such as with rare mutations of transcription factor GATA1 and advanced alternative splicing of a gene involved in iron metabolism, SLC49A1 (FLVCR1).
In 1997, a patient was identified who carried a rare balanced chromosomal translocation involving chromosome 19 and the X chromosome. This suggested that the affected gene might lie in one of the two regions that were disrupted by this cytogenetic anomaly. Linkage analysis in affected families also implicated this region in disease, and led to the cloning of the first DBA gene. About 20–25% of DBA cases are caused by mutations in the ribosome protein S19 (RPS19) gene on chromosome 19 at cytogenetic position 19q13.2. Some previously undiagnosed relatives of DBA patients were found to carry mutations, and also had increased adenosine deaminase levels in their red blood cells, but had no other overt signs of disease.
A subsequent study of families with no evidence of RPS19 mutations determined that 18 of 38 families showed evidence for involvement of an unknown gene on chromosome 8 at 8p23.3-8p22. The precise genetic defect in these families has not yet been delineated.
Malformations are seen more frequently with DBA6 RPL5 and DBA7 RPL11 mutations.
The genetic abnormalities underpinning the combination of DBA with Treacher Collins syndrome (TCS)/mandibulofacial dysostosis (MFD) phenotypes are heterogeneous, including RPS26 (the known DBA10 gene), TSR2 which encodes a direct binding partner of RPS26, and RPS28.
CDA may be transmitted by both parents autosomal recessively or dominantly and has over four different subtypes, but CDA Type I, CDA Type II, CDA Type III, and CDA Type IV are the most common. CDA type II (CDA II) is the most frequent type of congenital dyserythropoietic anemias. More than 300 cases have been described, but with the exception of a report by the International CDA II Registry, these reports include only small numbers of cases and no data on the lifetime evolution of the disease.
The phenotype of DBA patients suggests a hematological stem cell defect specifically affecting the erythroid progenitor population. Loss of ribosomal function might be predicted to affect translation and protein biosynthesis broadly and impact many tissues. However, DBA is characterized by dominant inheritance, and arises from partial loss of ribosomal function, so it is possible that erythroid progenitors are more sensitive to this decreased function, while most other tissues are less affected.
Congenital dyserythropoietic anemia type IV (CDA IV) has been described with typical morphologic features of CDA II but a negative acidified-serum test.
The anemia associated with CDA type II can range from mild to severe, and most affected individuals have jaundice, hepatosplenomegaly, and the formation of hard deposits in the gallbladder called bilirubin gallstones. This form of the disorder is usually diagnosed in adolescence or early adulthood. An abnormal buildup of iron typically occurs after age 20, leading to complications including heart disease, diabetes, and cirrhosis.
Majeed syndrome is an inherited skin disorder characterized by chronic recurrent multifocal osteomyelitis, congenital dyserythropoietic anemia and a neutrophilic dermatosis.
It is classified as an autoinflammatory bone disorder.
The condition is found in people with two defective copies (autosomal recessive inheritance) of the LPIN2 gene. LPIN2 encodes lipin-2 which is involved in lipid metabolism.
The pathogenesis of this mutation with the clinical manifestations has not been elucidated.
PNH is rare, with an annual rate of 1-2 cases per million. The prognosis without disease-modifying treatment is 10–20 years. Many cases develop in people who have previously been diagnosed with aplastic anemia or myelodysplastic syndrome. The fact that PNH develops in MDS also explains why there appears to be a higher rate of leukemia in PNH, as MDS can sometimes transform into leukemia.
25% of female cases of PNH are discovered during pregnancy. This group has a high rate of thrombosis, and the risk of death of both mother and child are significantly increased (20% and 8% respectively).
Basically classified by causative mechanism, types of congenital hemolytic anemia include:
- Genetic conditions of RBC Membrane
- Hereditary spherocytosis
- Hereditary elliptocytosis
- Genetic conditions of RBC metabolism (enzyme defects). This group is sometimes called "congenital nonspherocytic (hemolytic) anemia", which is a term for a congenital hemolytic anemia without spherocytosis, and usually excluding hemoglobin abnormalities as well, but rather encompassing defects of glycolysis in the erythrocyte.
- Glucose-6-phosphate dehydrogenase deficiency (G6PD or favism)
- Pyruvate kinase deficiency
- Aldolase A deficiency
- Hemoglobinopathies/genetic conditions of hemoglobin
- Sickle cell anemia
- Congenital dyserythropoietic anemia
- Thalassemia
By definition, primary immune deficiencies are due to genetic causes. They may result from a single genetic defect, but most are multifactorial. They may be caused by recessive or dominant inheritance. Some are latent, and require a certain environmental trigger to become manifest, like the presence in the environment of a reactive allergen. Other problems become apparent due to aging of bodily and cellular maintenance processes.
The life expectancy in alpha-mannosidosis is highly variable. Individuals with early onset severe disease often do not survive beyond childhood, whereas those with milder disorders may survive well into adult life.
These are a few specialized autoimmune disorders resulting from environmental rather than genetic causes, which mimic the genotypic disorders.
Gunther disease, also known as congenital erythropoietic porphyria (CEP), uroporphyrinogen III synthase deficiency and UROS deficiency, is a congenital form of erythropoietic porphyria. The word porphyria originated from the Greek word porphura. Porphura actually means "purple pigment", which, in suggestion, the color that the body fluid changes when a person has Gunther's disease. It is a rare, autosomal recessive metabolic disorder affecting heme, caused by deficiency of the enzyme uroporphyrinogen cosynthetase. It is extremely rare, with a prevalence estimated at 1 in 1,000,000 or less. There have been times that prior to birth of a fetus, Gunther's disease has been shown to lead to anemia. In milder cases patients have not presented any symptoms until they have reached adulthood. In Gunther's disease, porphyrins are accumulated in the teeth and bones and an increased amount are seen in the plasma, bone marrow, feces, red blood cells, and urine.
Congenital hypoplastic anemia (or constitutional aplastic anemia) is a type of aplastic anemia which is primarily due to a congenital disorder.
Associated genes include "TERC", "TERT", "IFNG", "NBS1", "PRF1", and "SBDS".
Examples include:
- Fanconi anemia
- Diamond-Blackfan anemia
CRMO was once considered strictly a childhood disease, but adults have been diagnosed with it. The affected tends to range from 4 to 14 years old, with 10 as the median age. As stated above, CRMO occurs 1:1,000,000 and primarily in girls with a 5:1 ratio. That means out of six million, there will probably be 5 girls and 1 boy with the condition.
Inherited or congenital FX deficiency is usually passed on by autosomal recessive inheritance. A person needs to inherit a defective gene from both parents. People who have only one defective gene are asymptomatic, but may have lower FXII levels and can pass the gene on to half their offspring.
In persons with congenital FXII deficiency the condition is lifelong. People affected may want to alert other family members as they may also may carry the gene. A 1994 study of 300 healthy blood donors found that 7 persons (2.3%) had FXII deficiencies with one subject having no detectable FXII (0.3%). This study is at variance with estimates that only 1 in 1,000,000 people has the condition.
The acquired form of FXII deficiency is seen in patients with the nephrotic syndrome, liver disease, sepsis and shock, disseminated intravascular coagulation, and other diseases.
Congenital hemolytic anemia (or hereditary hemolytic anemia) refers to hemolytic anemia which is primarily due to congenital disorders.
Some people have a history of exposure to chemotherapy (especially alkylating agents such as melphalan, cyclophosphamide, busulfan, and chlorambucil) or radiation (therapeutic or accidental), or both (e.g., at the time of stem cell transplantation for another disease). Workers in some industries with heavy exposure to hydrocarbons such as the petroleum industry have a slightly higher risk of contracting the disease than the general population. Xylene and benzene exposure has been associated with myelodysplasia. Vietnam veterans exposed to Agent Orange are at risk of developing MDS. A link may exist between the development of MDS "in atomic-bomb survivors 40 to 60 years after radiation exposure" (in this case, referring to people who were in close proximity to the dropping of the atomic bomb in Hiroshima and Nagasaki during World War II).
Children with Down syndrome are susceptible to MDS, and a family history may indicate a hereditary form of sideroblastic anemia or Fanconi anemia.