Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Risk factors for an aneurysm include diabetes, obesity, hypertension, tobacco use, alcoholism, high cholesterol, copper deficiency, increasing age, and tertiary syphilis infection.
Specific infective causes associated with aneurysm include:
- Advanced syphilis infection resulting in syphilitic aortitis and an aortic aneurysm
- Tuberculosis, causing Rasmussen's aneurysms
- Brain infections, causing infectious intracranial aneurysms
A minority of aneurysms are associated with genetic factors. Examples include:
- Berry aneurysms of the anterior communicating artery of the circle of Willis, associated with autosomal dominant polycystic kidney disease
- Familial thoracic aortic aneurysms
- Cirsoid aneurysms, secondary to congenital arteriovenous malformations
Incidence rates of cranial aneurysms are estimated at between 0.4% and 3.6%. Those without risk factors have expected prevalence of 2–3%. In adults, females are more likely to have aneurysms. They are most prevalent in people ages 35 – 60, but can occur in children as well. Aneurysms are rare in children with a reported prevalence of .5% to 4.6%. The most common incidence are among 50-year-olds, and there are typically no warning signs. Most aneurysms develop after the age of 40.
Hypertension and cigarette smoking are the most important risk factors, though the importance of genetic factors has been increasingly recognized. Approximately 10% of patients may have other family members who have aortic aneurysms. It is also important to note that individuals with a history of aneurysms in other parts of the body have a higher chance of developing a thoracic aortic aneurysm.
The annual incidence is about 1.1 per 100,000 annually in population studies from the United States and France. From 1994 to 2003, the incidence increased threefold; this has been attributed to the more widespread use of modern imaging modalities rather than a true increase. Similarly, those living in urban areas are more likely to receive appropriate investigations, accounting for increased rates of diagnosis in those dwelling in cities. It is suspected that a proportion of cases in people with mild symptoms remains undiagnosed.
There is controversy as to whether VAD is more common in men or in women; an aggregate of all studies shows that it is slightly higher incidence in men (56% versus 44%). Men are on average 37–44 years old at diagnosis, and women 34–44. While dissection of the carotid and vertebral arteries accounts for only 2% of strokes (which are usually caused by high blood pressure and other risk factors, and tend to occur in the elderly), they cause 10–25% of strokes in young and middle-aged people.
Dissecting aneurysms of the vertebral artery constitute 4% of all cerebral aneurysms, and are hence a relatively rare but important cause of subarachnoid hemorrhage.
Prognosis of spontaneous cervical arterial dissection involves neurological and arterial results. The overall functional prognosis of individuals with stroke due to cervical artery dissection does not appear to vary from that of young people with stroke due to other causes. The rate of survival with good outcome (a modified Rankin score of 0–2) is generally about 75%, or possibly slightly better (85.7%) if antiplatelet drugs are used. In studies of anticoagulants and aspirin, the combined mortality with either treatment is 1.8–2.1%.
After the initial episode, 2% may experience a further episode within the first month. After this, there is a 1% annual risk of recurrence. Those with high blood pressure and dissections in multiple arteries may have a higher risk of recurrence. Further episodes of cervical artery dissection are more common in those who are younger, have a family history of cervical artery dissection, or have a diagnosis of Ehlers-Danlos syndrome or fibromuscular dysplasia.
Generally, it has a good prognosis. In Kawasaki's disease, untreated, there is a 1–2% death rate, from cardiac causes.
Mortality from aortic rupture is up to 90%. 65–75% of patients die before they arrive at hospital and up to 90% die before they reach the operating room.
Establishing the incidence of aortic dissection has been difficult because many cases are only diagnosed after death (which may have been attributed to another cause), and is often initially misdiagnosed. Aortic dissection affects an estimated 2.0–3.5 people per every 100,000 every year. Studies from Sweden suggest that the incidence of aortic dissection may be rising. Men are more commonly affected than women: 65% of all people with aortic dissection are male. The mean age at diagnosis is 63 years. In females before the age of 40, half of all aortic dissections occur during pregnancy (typically in the third trimester or early postpartum period).
Although the exact cause is unknown, some risk factors associated with individuals with IAA are:
Tobacco Use: Cigarette smoking and other forms of tobacco use appear to increase your risk of aortic aneurysms. In addition to the damaging effects that smoking causes directly to the arteries, smoking contributes to the buildup of fatty plaques in your arteries (atherosclerosis) and high blood pressure. Smoking can also cause your aneurysm to grow faster by further damaging your aorta.
Hardening of the arteries (atherosclerosis). Atherosclerosis occurs when fat and other substances build up on the lining of a blood vessel, increasing your risk of an aneurysm.
Infection in the aorta (vasculitis). In rare cases, abdominal aortic aneurysm may be caused by an infection or inflammation that weakens a section of the aortic wall.
Among the recognized risk factors for aortic dissection, hypertension, abnormally high levels of lipids (such as cholesterol) in the blood, and smoking tobacco are considered preventable risk factors.
Repair of an enlargement of the ascending aorta from an aneurysm or previously unrecognized and untreated aortic dissections is recommended when greater than in size to decrease the risk of dissection. Repair may be recommended when greater than in size if the person has one of the several connective-tissue disorders or a family history of a ruptured aorta.
Intracranial aneurysms may result from diseases acquired during life, or from genetic conditions. Lifestyle diseases including hypertension, smoking, excessive alcoholism, and obesity are associated with the development of brain aneurysms. Cocaine use has also been associated with the development of intracranial aneurysms.
Other acquired associations with intracranial aneurysms include head trauma and infections.
Each year in the United States, some 45,000 people die from diseases of the aorta and its branches. Acute aortic dissection, a life-threatening event due to a tear in the aortic wall, affects 5 to 10 patients per million population each year, most often men between the ages of 50 and 70; of those that occur in women younger than 40, nearly half arise during pregnancy. The majority of these deaths occur as a result of complications of thoracic aneurysmal disease.
The prevalence of intracranial aneurysm is about 1-5% (10 million to 12 million persons in the United States) and the incidence is 1 per 10,000 persons per year in the United States (approximately 27,000), with 30- to 60-year-olds being the age group most affected. Intracranial aneurysms occur more in women, by a ratio of 3 to 2, and are rarely seen in pediatric populations.
Examples include:
- Aortic dissection (aorta)
- Coronary artery dissection (coronary artery)
- Carotid artery dissection (carotid artery)
- Vertebral artery dissection (vertebral artery)
Carotid and vertebral artery dissection are grouped together as "cervical artery dissection".
Aortic rupture is the rupture or breakage of the aorta, the largest artery in the body. Aortic rupture is a rare, extremely dangerous condition. The most common cause is an abdominal aortic aneurysm that has ruptured spontaneously. Aortic rupture is distinct from aortic dissection, which is a tear through the inner wall of the aorta that can block the flow of blood through the aorta to the heart or abdominal organs.
An aortic rupture can be classified according to its cause into one of the following main types:
- Traumatic aortic rupture
- Aortic rupture secondary to an aortic aneurysm
In medical pathology, a dissection is a tear within the wall of a blood vessel, which allows blood to separate the wall layers. By separating a portion of the wall of the artery (a layer of the tunica intima or tunica media), a dissection creates two lumens or passages within the vessel, the native or true lumen, and the "false lumen" created by the new space within the wall of the artery.
The incidence of myocardial rupture has decreased in the era of urgent revascularization and aggressive pharmacological therapy for the treatment of an acute myocardial infarction. However, the decrease in the incidence of myocardial rupture is not uniform; there is a slight increase in the incidence of rupture if thrombolytic agents are used to abort a myocardial infarction. On the other hand, if primary percutaneous coronary intervention is performed to abort the infarction, the incidence of rupture is significantly lowered. The incidence of myocardial rupture if PCI is performed in the setting of an acute myocardial infarction is about 1 percent.
There is evidence to suggest that a major cause of spontaneous coronary artery dissection (SCAD) is related to female hormone levels, as most cases appear to arise in pre-menopausal women, although there is evidence that the condition can have various triggers. Other underlying conditions such as hypertension, recent delivery of a baby, fibromuscular dysplasia and connective-tissue disorders (e.g., Marfan syndrome and Ehlers-Danlos syndrome) may occasionally result in SCAD. There is also a possibility that vigorous exercise can be a trigger. However, many cases have no obvious cause.
Acquired causes include atherosclerosis, Kawasaki disease and coronary catheterization.
It can also be congenital.
IIAs are uncommon, accounting for 2.6% to 6% of all intracranial aneurysms in autopsy studies.
A study showed that those who quit smoking reduced their risk of being hospitalized over the next two years.
Smoking increases blood pressure, as well as increases the risk of high cholesterol. Quitting can lower blood pressure, and triglyceride levels.
Secondhand smoke is also bad for the heart health.
Coronary artery disease has a number of well determined risk factors. These include high blood pressure, smoking, diabetes, lack of exercise, obesity, high blood cholesterol, poor diet, depression, family history, and excessive alcohol. About half of cases are linked to genetics. Smoking and obesity are associated with about 36% and 20% of cases, respectively. Lack of exercise has been linked to 7–12% of cases. Exposure to the herbicide Agent orange may increase risk. Both rheumatoid arthritis and systemic lupus erythematosus are independent risk factors as well.
Job stress appears to play a minor role accounting for about 3% of cases.
In one study, women who were free of stress from work life saw an increase in the diameter of their blood vessels, leading to decreased progression of atherosclerosis. In contrast, women who had high levels of work-related stress experienced a decrease in the diameter of their blood vessels and significantly increased disease progression. Having a type A behavior pattern, a group of personality characteristics including time urgency, competitiveness, hostility, and impatience is linked to an increased risk of coronary disease.
In general, an aneurysm is bulge that can occur in blood vessels or sometimes in the heart itself. In the case of IAA, this type of aneurysm is localized in the aortic artery, which is the artery that carries oxygenated blood from the heart to the rest of the body. . This location is ideal for aneurysms to develop based upon the high stress and pressure from blood circulation. Fibrosis, a stiffening of the muscle, may occur due to the exposure to stress and blood pressure. In the development of the fibrosis an autoimmune response may occur which in the area causing the "inflammation." This inflammation is what gives IAA the characteristic thickened walls of the aneurysm.
All types of abdominal aortic aneurysms occur in the part of the aorta that passes through the middle to low abdomen. Thoracic aortic aneurysms occur on the aorta as it passes through the chest cavity. These are less common than abdominal aneurysms. Small aneurysms generally pose no threat. However, aneurysms increase the risk for:
- Atherosclerotic plaques to form at the site of the aneurysm, which causes further weakening of the artery wall.
- blood clots may form at the site and dislodge, increasing the chance of stroke
- Increase in the size of the aneurysm, causing it to press on other organs, which may cause pain.
- Aneurysm may also rupture. It is fragile and may burst under stress. The rupture of an aortic aneurysm is a catastrophic, life-threatening event.
The relation between dietary fat and atherosclerosis is controversial. Writing in "Science", Gary Taubes detailed that political considerations played into the recommendations of government bodies. The USDA, in its food pyramid, promotes a diet of about 64% carbohydrates from total calories. The American Heart Association, the American Diabetes Association and the National Cholesterol Education Program make similar recommendations. In contrast, Prof Walter Willett (Harvard School of Public Health, PI of the second Nurses' Health Study) recommends much higher levels of fat, especially of monounsaturated and polyunsaturated fat. These differing views reach a consensus, though, against consumption of trans fats.
The role of dietary oxidized fats/lipid peroxidation (rancid fats) in humans is not clear.
Laboratory animals fed rancid fats develop atherosclerosis. Rats fed DHA-containing oils experienced marked disruptions to their antioxidant systems, and accumulated significant amounts of phospholipid hydroperoxide in their blood, livers and kidneys.
Rabbits fed atherogenic diets containing various oils were found to undergo the greatest amount of oxidative susceptibility of LDL via polyunsaturated oils. In another study, rabbits fed heated soybean oil "grossly induced atherosclerosis and marked liver damage were histologically and clinically demonstrated." However, Fred Kummerow claims that it is not dietary cholesterol, but oxysterols, or oxidized cholesterols, from fried foods and smoking, that are the culprit.
Rancid fats and oils taste very bad even in small amounts, so people avoid eating them.
It is very difficult to measure or estimate the actual human consumption of these substances. Highly unsaturated omega-3 rich oils such as fish oil are being sold in pill form so that the taste of oxidized or rancid fat is not apparent. The health food industry's dietary supplements are self regulated and outside of FDA regulations. To properly protect unsaturated fats from oxidation, it is best to keep them cool and in oxygen free environments.
In 2011, coronary atherosclerosis was one of the top ten most expensive conditions seen during inpatient hospitalizations in the U.S., with aggregate inpatient hospital costs of $10.4 billion.