Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Training of the feet, utilizing foot gymnastics and going barefoot on varying terrain, can facilitate the formation of arches during childhood, with a developed arch occurring for most by the age of four to six years. Ligament laxity is also among the factors known to be associated with flat feet. One medical study in India with a large sample size of children who had grown up wearing shoes and others going barefoot found that the longitudinal arches of the bare-footers were generally strongest and highest as a group, and that flat feet were less common in children who had grown up wearing sandals or slippers than among those who had worn closed-toe shoes. Focusing on the influence of footwear on the prevalence of pes planus, the cross-sectional study performed on children noted that wearing shoes throughout early childhood can be detrimental to the development of a normal or a high medial longitudinal arch. The vulnerability for flat foot among shoe-wearing children increases if the child has an associated ligament laxity condition. The results of the study suggest that children be encouraged to play barefooted on various surfaces of terrain and that slippers and sandals are less harmful compared to closed-toe shoes. It appeared that closed-toe shoes greatly inhibited the development of the arch of the foot more so than slippers or sandals. This conclusion may be a result of the notion that intrinsic muscle activity of the arch is required to prevent slippers and sandals from falling off the child’s foot.
Flat feet can also develop as an adult ("adult acquired flatfoot") due to injury, illness, unusual or prolonged stress to the foot, faulty biomechanics, or as part of the normal aging process. This is most common in women over 40 years of age. Known risk factors include obesity, hypertension and diabetes. Flat feet can also occur in pregnant women as a result of temporary changes, due to increased elastin (elasticity) during pregnancy. However, if developed by adulthood, flat feet generally remain flat permanently.
If a youth or adult appears flatfooted while standing in a full weight bearing position, but an arch appears when the person plantarflexes, or pulls the toes back with the rest of the foot flat on the floor, this condition is called flexible flatfoot. This is not a true collapsed arch, as the medial longitudinal arch is still present and the windlass mechanism still operates; this presentation is actually due to excessive pronation of the foot (rolling inwards), although the term 'flat foot' is still applicable as it is a somewhat generic term. Muscular training of the feet is helpful and will often result in increased arch height regardless of age.
There are few good estimates of prevalence for pes cavus in the general community. While pes cavus has been reported in between 2 and 29% of the adult population, there are several limitations of the prevalence data reported in these studies. Population-based studies suggest the prevalence of the cavus foot is approximately 10%.
Morton's Toe is a minority variant of foot shape. Its recorded prevalence varies in different populations, with estimates from 2.95% to 22%.
Brachymetatarsia is found to occur more frequently in women than men.
Rocker bottom foot, also known as congenital vertical talus, is an anomaly of the foot. It is characterized by a prominent calcaneus (heel bone) and a convex rounded bottom of the foot. It gets its name from the foot's resemblance to the bottom of a rocking chair.
It can be associated with Edwards' syndrome (trisomy 18), Patau syndrome (trisomy 13), Trisomy 9 and mutation in the gene HOXD10.
It can also be associated with Charcots foot.
Pes cavus may be hereditary or acquired, and the underlying cause may be neurological, orthopedic, or neuromuscular. Pes cavus is sometimes—but not always—connected through Hereditary Motor and Sensory Neuropathy Type 1 (Charcot-Marie-Tooth disease) and Friedreich's Ataxia; many other cases of pes cavus are natural.
The cause and deforming mechanism underlying pes cavus is complex and not well understood. Factors considered influential in the development of pes cavus include muscle weakness and imbalance in neuromuscular disease, residual effects of congenital clubfoot, post-traumatic bone malformation, contracture of the plantar fascia, and shortening of the Achilles tendon.
Among the cases of neuromuscular pes cavus, 50% have been attributed to Charcot-Marie-Tooth disease, which is the most common type of inherited neuropathy with an incidence of 1 per 2,500 persons affected. Also known as Hereditary Motor and Sensory Neuropathy (HMSN), it is genetically heterogeneous and usually presents in the first decade of life with delayed motor milestones, distal muscle weakness, clumsiness, and frequent falls. By adulthood, Charcot-Marie-Tooth disease can cause painful foot deformities such as pes cavus. Although it is a relatively common disorder affecting the foot and ankle, little is known about the distribution of muscle weakness, severity of orthopaedic deformities, or types of foot pain experienced. There are no cures or effective courses of treatment to halt the progression of any form of Charcot-Marie-Tooth disease.
The development of the cavus foot structure seen in Charcot-Marie-Tooth disease has been previously linked to an imbalance of muscle strength around the foot and ankle. A hypothetical model proposed by various authors describes a relationship whereby weak evertor muscles are overpowered by stronger invertor muscles, causing an adducted forefoot and inverted rearfoot. Similarly, weak dorsiflexors are overpowered by stronger plantarflexors, causing a plantarflexed first metatarsal and anterior pes cavus.
Pes cavus is also evident in people without neuropathy or other neurological deficit. In the absence of neurological, congenital, or traumatic causes of pes cavus, the remaining cases are classified as being ‘idiopathic’ because their aetiology is unknown.
There are many hypotheses about how clubfoot develops. Some hypothesis include: environmental factors, genetics, or a combination of both. Research has not yet pinpointed the root cause, but many findings agree that "it is likely there is more than one different cause and at least in some cases the phenotype may occur as a result of a threshold effect of different factors acting together."
Some researchers hypothesize, from the early development stages of humans, that clubfoot is formed by a malfunction during gestation. Early amniocentesis (11–13 wks) is believed to increase the rate of clubfoot because there is an increase in potential amniotic leakage from the procedure. Underdevelopment of the bones and muscles of the embryonic foot may be another underlying cause. In the early 1900s it was thought that constriction of the foot by the uterus contributed to the occurrence of clubfoot.
Underdevelopment of the bones also affects the muscles and tissues of the foot. Abnormality in the connective tissue causes "the presence of increased fibrous tissue in muscles, fascia, ligaments and tendon sheaths".
Asymptomatic anatomical variations in feet generally do not need treatment.
Conservative treatment for foot pain with Morton's toe may involve exercises or placing a flexible pad under the first toe and metatarsal; an early version of the latter treatment was once patented by Dudley Joy Morton. Restoring the Morton’s toe to normal function with proprioceptive orthotics can help alleviate numerous problems of the feet such as metatarsalgia, hammer toes, bunions, Morton's neuroma, plantar fasciitis, and general fatigue of the feet. Rare cases of disabling pain are sometimes treated surgically.
Several risk factors of CMC OA of the thumb are known. Each of these risk factors does not cause CMC OA by itself, but acts as a predisposing factor influencing the process of OA in some way. Risk factors include: female gender, suffering from obesity, repetitive heavy manual labor, familial predisposition and hormonal changes, such as menopause.
Type II should be managed conservatively whereas type I and Ia requires to be treated surgically. Surgery involves four major steps:
- Development of the calcaneal part of the foot
- Repositioning of the navicular bone
- New adjustment of the ankle, and
- Various stabilization measures including the Grice operation and transposition of various tendons.
CMC OA is the most common form of OA affecting the hand. Dahaghin et al. showed that about 15% of women and 7% of men between 50 and 60 years of age suffer from CMC OA of the thumb. However, in about 65% of people older than 55 years, radiologic evidence of OA was present without any symptoms. Armstrong et al. reported a prevalence of 33% in postmenopausal women, of which one third was symptomatic, compared to 11% in men older than 55 years. This shows CMC OA of the thumb is significantly more prevalent in women, especially in postmenopausal women, compared to men.
Clubfoot is a birth defect where one or both feet are rotated inwards and downwards. The affected foot, calf, and leg may be smaller than the other. In about half of those affected, both feet are involved. Most cases are not associated with other problems. Without treatment, people walk on the sides of their feet which causes issues with walking.
The exact cause is usually unclear. A few cases are associated with distal arthrogryposis or myelomeningocele. If one identical twin is affected there is a 33% chance the other one will be as well. Diagnosis may occur at birth or before birth during an ultrasound exam.
Initial treatment is most often with the Ponseti method. This involves moving the foot into an improved position followed by casting, which is repeated at weekly intervals. Once the inward bending is improved, the Achilles tendon is often cut and braces are worn until the age of four. Initially the brace is worn nearly continuously and then just at night. In about 20% of cases further surgery is required.
Clubfoot occurs in about one in 1,000 newborns. The condition is less common among the Chinese and more common among Maori. Males are affected about twice as often as females. Treatment can be carried out by a range of healthcare providers and can generally be achieved in the developing world with few resources.
Wearing shoes to protect barefoot trauma has shown decrease in incidence in ainhum. Congenital pseudoainhum cannot be prevented and can lead to serious birth defects.
An equinovalgus is a deformity of the human foot. It may be a flexible deformity or a fixed deformity. Equino- means plantarflexed (as in standing on one's toes), and valgus means that the base of the heel is rotated away from the midline of the foot (eversion) and abduction of foot. This means that the patient is placing his/her weight on the medial border of the foot, and the arch of the foot is absent, which distorts the foot's normal shape.
Equinovalgus mostly occurs due to tightness of plantar flexors (calf muscles) and peroneus group of muscles.
Atherosclerotic restriction to the arterial supply in peripheral artery occlusive disease may result in painful arterial ulcers of the ankle and foot, or give rise of gangrene of the toes and foot. Immobility of a person may result in prolonged pressure applied to the heels causing pressure sores.
Impaired venous drainage from the foot in varicose veins may sequentially result in brown haemosiderin discolouration to the ankle and foot, varicose stasis dermatitis and finally venous ulcers.
Other disorders of the foot include osteoarthritis of the joints, peripheral neuropathy and plantar warts.
The most common cause of foot pain is wearing ill fitting shoes. Women often wear tight shoes that are narrow and constrictive, and thus are most prone to foot problems. Tight shoes often cause overcrowding of toes and result in a variety of structural defects. The next most common cause of foot disease is overuse or traumatic injuries.
A foot deformity is a disorder of the foot that can be congenital or acquired.
Such deformities can include hammer toe, club foot, flat feet, pes cavus, etc.
The cause of fibular hemimelia is unclear. Purportedly, there have been some incidents of genetic distribution in a family; however, this does not account for all cases. Maternal viral infections, embryonic trauma, teratogenic environmental exposures or vascular dysgenesis (failure of the embryo to form a satisfactory blood supply) between four and seven weeks gestation are considered possible causes.
In an experimental mouse model, change in the expression of a homeobox gene led to similar, but bilateral, fibular defects.
Symptoms may be treated by wearing wider shoes to relieve pressure, or patient can wear padding around the toes. Surgery is also an option, if the pain and discomfort cannot be treated, or for cosmetic reasons. In this procedure, the short metatarsal is typically cut and a piece of bone is grafted between the two ends. In some cases an external fixator may be attached to the metatarsal with pins. Within the external fixator is an adjustable screw that must be turned (per doctors' orders) to lengthen the gap between bone segments, so the bone will regrow to the appropriate shape.
Following surgery, crutches or a knee scooter should be used to keep all weight off the surgically repaired foot for 3 months. After this period, orthopedic shoes or boots may be used.
Toe walking refers to a condition where a person walks on their toes without putting much weight on the heel or any other part of the foot. Toe walking in toddlers is common. These children usually adopt a normal walking pattern as they grow older. If a child continues to walk on their toes past the age of three, they should be evaluated by a doctor.
Toe walking can be caused by different factors. One type of toe walking is also called "habitual" or "idiopathic" toe walking, where the cause is unknown. Other causes include a congenital short Achilles tendon, muscle spasticity (especially as associated with cerebral palsy) and paralytic muscle disease such as Duchenne muscular dystrophy. A congenital shortening of the Achilles tendon can be hereditary, can take place over time as the result of abnormal foot structure which shortens the tendon, or can shorten over time if its full length is not being used. Toe walking is sometimes caused by a bone block located at the ankle which prevents the antagonist movement, dorsiflexion. This cause is often associated with trauma or arthritis. It may also be one way of accommodating a separate condition, foot drop. Persistent toe walking in children has been identified as a potential early sign of autism.
Toe walking has been found to be more prevalent in males than females when tested with very large numbers of children. This study looked for family history of toe walking and the connection to children demonstrating ITW. 64.2% of the subjects with ITW were males showing a relationship between ITW and males. Of 348 subjects with positive family history of toe walking, about 60% had family history on the paternal side showing it may be genetically related to paternal genes. In 30-42% of idiopathic toe walkers, a family link has been observed.
Diplopodia is a congenital anomaly in tetrapods that involves duplication of elements of the foot on the hind limb. It comes from the Greek roots diplo = "double" and pod = "foot". Diplopodia is often found in conjunction with other structural abnormalities and can be lethal. It is more extreme than polydactyly, the presence of extra digits.
The true cause of ainhum remains unclear. It is not due to infection by parasites, fungi, bacteria or virus, and it is not related to injury. Walking barefoot in childhood had been linked to this disease, but ainhum also occurs in patients who have never gone barefoot. Race seems to be one of the most predisposing factors and it may have a genetic component, since it has been reported to occur within families. Dent et al. discussed a genetically caused abnormality of the blood supply to the foot. It has been related to inadequate posterior tibial artery circulation and absence of plantar arch.
The cause of PFFD is uncertain. Two hypotheses have been advanced. The theory of sclerotome subtraction posits injury to neural crest cells that are the precursors to sensory nerves at the level of L4 and L5. Histologic studies of a fetus with unilateral PFFD have prompted an alternative hypothesis that PFFD is caused by a defect in maturation of chondrocytes (cartilage cells) at the growth plate. In either hypothesis, the agent causing the injury is usually not known. Thalidomide is known to cause PFFD when the mother is exposed to it in the fifth or sixth week of pregnancy, and it is speculated that exposure to other toxins during pregnancy may also be a cause. Other etiologies that have been suggested, but not proven, include anoxia, ischemia, radiation, infection, hormones, and mechanical force. PFFD occurs sporadically, and does not appear to be hereditary.
Fibular hemimelia or longitudinal fibular deficiency is "the congenital absence of the fibula and it is the most common congenital absence of long bone of the extremities." It is the shortening of the fibula at birth, or the complete lack thereof. In humans, the disorder can be noted by ultrasound in utero to prepare for amputation after birth or complex bone lengthening surgery. The amputation usually takes place at six months with removal of portions of the legs to prepare them for prosthetic use. The other treatments which include repeated corrective osteotomies and leg-lengthening surgery (Ilizarov apparatus) are costly and associated with residual deformity.