Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
3C syndrome is very rare, occurring in less than 1 birth per million. Because of consanguinity due to a founder effect, it is much more common in a remote First Nations village in Manitoba, where 1 in 9 people carries the recessive gene.
The overall incidence is ~1/42,000 to 1/50,000 people. Types I and II are the most common types of the syndrome, whereas types III and IV are rare. Type 4 is also known as Waardenburg‐Shah syndrome (association of Waardenburg syndrome with Hirschsprung disease).
Type 4 is rare with only 48 cases reported up to 2002.
About 1 in 30 students in schools for the deaf have Waardenburg syndrome. All races and sexes are affected equally. The highly variable presentation of the syndrome makes it difficult to arrive at precise figures for its prevalence.
Hirschsprung's disease can also present as part of a multisystem disorder, such as Down syndrome, Bardet–Biedl syndrome, Waardenburg–Shah syndrome, Mowat–Wilson syndrome, Goldberg–Shprintzen megacolon syndrome, cartilage–hair hypoplasia, multiple endocrine neoplasia type 2, Smith-Lemli-Opitz syndrome, and congenital central hypoventilation syndrome.
- Bardet–Biedl syndrome
- Cartilage–hair hypoplasia
- Congenital central hypoventilation syndrome
- MEN2
- Mowat–Wilson syndrome
- Smith–Lemli–Opitz syndrome
- Trisomy 21 (Down syndrome)
- Waardenburg syndrome
Prognoses for 3C syndrome vary widely based on the specific constellation of symptoms seen in an individual. Typically, the gravity of the prognosis correlates with the severity of the cardiac abnormalities. For children with less severe cardiac abnormalities, the developmental prognosis depends on the cerebellar abnormalities that are present. Severe cerebellar hypoplasia is associated with growth and speech delays, as well as hypotonia and general growth deficiencies.
Recent findings in genetic research have suggested that a large number of genetic disorders, both genetic syndromes and genetic diseases, that were not previously identified in the medical literature as related, may be, in fact, highly related in the genotypical root cause of these widely varying, phenotypically-observed disorders. Orofaciodigital syndrome has been found to be a ciliopathy. Other known ciliopathies include primary ciliary dyskinesia, Bardet-Biedl syndrome, polycystic kidney disease and polycystic liver disease, nephronophthisis, Alstrom syndrome, Meckel-Gruber syndrome and some forms of retinal degeneration.
There is currently no treatment or cure for Waardenburg syndrome. The symptom most likely to be of practical importance is deafness, and this is treated as any other irreversible deafness would be. In marked cases there may be cosmetic issues. Other abnormalities (neurological, structural, Hirschsprung disease) associated with the syndrome are treated symptomatically.
Orofaciodigital syndrome 1 (OFD1), also called Papillon-League and Psaume syndrome, is an X-linked congenital disorder characterized by malformations of the face, oral cavity, and digits with polycystic kidney disease and variable involvement of the central nervous system.
Common and rare DNA variations in the neuregulin 1 (NRG1) and NRG3 (NRG3) were first shown to be associated with the disease in Chinese patients through a Genome Wide Association Study by the Hong Kong team in 2009 and 2012, respectively Subsequent studies in both Asian and Caucasian patients confirmed the initial findings by the University of Hong Kong. Both rare and common variants in these two genes have been identified in additional Chinese, Thai, Korean, Indonesian and Spanish patients. These two genes are known to play a role in the formation of the enteric nervous system; thus, they are likely to be involved in the pathology of Hirschsprung's disease, at least in some cases.
Mowat–Wilson syndrome is a rare genetic disorder that was clinically delineated by Dr. D. R. Mowat and Dr. M. J. Wilson in 1998.
Ramos-Arroyo syndrome is marked by corneal anesthesia, absence of the peripapillary choriocapillaris and retinal pigment epithelium, bilateral sensorineural hearing loss, unusual facial appearance, persistent ductus arteriosus, Hirschsprung disease, and moderate intellectual disability. It appears to be a distinct autosomal dominant syndrome with variable expressivity.
As of 2008 this syndrome has only been reported in five individuals within three generations of the same family; two young children, their mother, their uncle and their maternal grandmother. This most recent generation to be diagnosed with Ramos-Arroyo syndrome supports the hypothesis that this disease is a distinct autosomal
dominant disorder. If this syndrome could be identified in other families it may help to discriminate the gene responsible.
This autosomal dominant disorder is characterized by a number of health defects including Hirschsprung's disease, intellectual disability, epilepsy, delayed growth and motor development, congenital heart disease, genitourinary anomalies and absence of the corpus callosum. However, Hirschsprung's disease is not present in all infants with Mowat–Wilson syndrome and therefore it is not a required diagnostic criterion. Distinctive physical features include microcephaly, narrow chin, cupped ears with uplifted lobes with central depression, deep and widely set eyes, open mouth, wide nasal bridge and a shortened philtrum.
In a newborn boy thought to have Fryns syndrome, Clark and Fenner-Gonzales (1989) found mosaicism for a tandem duplication of 1q24-q31.2. They suggested that the gene for this disorder is located in that region. However, de Jong et al. (1989), Krassikoff and Sekhon (1990), and Dean et al. (1991) found possible Fryns syndrome associated with anomalies of chromosome 15, chromosome 6, chromosome 8(human)and chromosome 22, respectively. Thus, these cases may all represent mimics of the mendelian syndrome and have no significance as to the location of the gene for the recessive disorder.
By array CGH, Slavotinek et al. (2005) screened patients with DIH and additional phenotypic anomalies consistent with Fryns syndrome for cryptic chromosomal aberrations. They identified submicroscopic chromosome deletions in 3 probands who had previously been diagnosed with Fryns syndrome and had normal karyotyping with G-banded chromosome analysis. Two female infants were found to have microdeletions involving 15q26.2 (see 142340), and 1 male infant had a deletion in band 8p23.1 (see 222400).
Fryns syndrome is an autosomal recessive multiple congenital anomaly syndrome that is usually lethal in the neonatal period. Fryns (1987) reviewed the syndrome.
OAFNS is a combination of FND and oculo-auriculo-vertebral spectrum (OAVS).
The diagnosis of OAVS is based on the following facial characteristics: microtia (underdeveloped external ear), preauricular tags, facial asymmetry, mandibular hypoplasia and epibulbar lipodermoids (benign tumor of the eye which consists of adipose and fibrous tissue).
There still remains discussion about the classification and the minimal amount of characteristics. When someone presents with FND and the characteristics of OAVS, the diagnosis OAFNS may be made.
As the incidence of OAFNS is unknown, there are probably a lot of children with mild phenotypes that aren’t being diagnosed as being OAFNS.
The cause of OAFNS is unknown, but there are some theories about the genesis. Autosomal recessive inheritance is suggested because of a case with two affected siblings and a case with consanguineous parents. However, another study shows that it is more plausible that OAFNS is sporadic.
It is known that maternal diabetes plays a role in developing malformations of craniofacial structures and in OAVS. Therefore, it is suggested as a cause of OAFNS. Folate deficiency is also suggested as possible mechanism.
Low-dose CT protocols should be considered in diagnosing children with OAFNS.
Acromelic frontonasal dysplasia is a rare subtype of FND. It has an autosomal recessive inheritance. Acromelic frontonasal dysplasia is associated with central nervous system malformations and limb defects including a clubfoot, an underdeveloped shin-bone, and preaxial polydactyly of the feet. Preaxial polydactyly is a condition in which there are too many toes on the side of the big toe. The phenotype of AFND is severe: a type Ia DeMyer and a Sedano type D. In contrast to the other subtypes of FND, AFND has a relatively high frequency of underlying malformations of the brain.
Central hypoventilation syndrome is a heterogeneous group of seemingly overlapping diseases. Paired-like homeobox 2B (PHOX2B) was confirmed in 2009 as the disease-causing gene in patients with congenital central hypoventilation syndrome (CCHS), a condition present in newborns. This genetic mutation is not present though in those with late-onset central hypoventilation syndrome and hypothalamic dysfunction.
Neurocristopathy is a diverse class of pathologies that may arise from defects in the development of tissues containing cells commonly derived from the embryonic neural crest cell lineage. The term was coined by Robert P. Bolande in 1974.
Accepted examples are piebaldism, Waardenburg syndrome, Hirschsprung disease, Ondine's curse (congenital central hypoventilation syndrome), pheochromocytoma, paraganglioma, Merkel cell carcinoma, multiple endocrine neoplasia, neurofibromatosis type I, CHARGE syndrome, familial dysautonomia, DiGeorge syndrome, Axenfeld-Rieger syndrome, Goldenhar syndrome (a.k.a. hemifacial microsomia), craniofrontonasal syndrome, congenital melanocytic nevus, melanoma, and certain congenital heart defects of the outflow tract, in particular.
Multiple sclerosis has also been suggested as being neurocristopathic in origin.
The usefulness of the definition resides in its ability to refer to a potentially common etiological factor for certain neoplasms and/or congenital malformation associations that are otherwise difficult to group with other means of nosology.
Rapid-onset Obesity with Hypothalamic dysfunction, Hypoventilation and Autonomic Dysregulation (ROHHAD syndrome) is a very rare disease affecting approximately 75 people worldwide. Patients with ROHHAD, as well as patients with congenital central hypoventilation syndrome (CCHS) have damage to the mechanism governing proper breathing. ROHHAD syndrome is a disease that is potentially lethal and incurable. Fifteen patients with ROHHAD were evaluated by Diego Ize-Ludlow et al. work published in 2007.
Two broad types of genetic abnormality have been found to cause ACDMPV: (1) a mutation of the FOXF1 gene on chromosome 16, or (2) other genetic abnormalities such as deletions in areas of chromosome 16 that regulate the expression of the "FOXF1" gene. New genetic abnormalities are being found regularly, but at present around 80-90% of infants with confirmed ACDMPV can be found to have one of these abnormalities. The genetic abnormalities responsible for ACDMPV in the remaining 10-20% of cases are currently being investigated including testing for deletions farther away from the FOXF1 gene on chromosome 16 and whole exome testing.
Baylor College of Medicine in Houston, Texas has conducted ACD research since 2001.
New research resources have become available for the NM community, such as the CMDIR (registry) and the CMD-TR (biorepository). These two resources connect families and individuals interested in participating in research with the scientists that aim to treat or cure NM. Some research on NM seeks to better understand the molecular effects the gene mutations have on muscle cells and the rest of the body and to observe any connections NM may have to other diseases and health complications.
WSN is caused by a mutation of the keratin 4 or keratin 13 genes, located respectively at human chromosomes 12q13 and 17q21-q22. The condition is inherited in an autosomal dominant manner. This indicates that the defective gene responsible for a disorder is located on an autosome (chromosomes 12 and 17 are autosomes), and only one copy of the defective gene is sufficient to cause the disorder, when inherited from a parent who has the disorder.
The ICD-10 lists WSN under "other congenital malformations of mouth". It could be classified as a skin condition, or more precisely as a genodermatosis (a genetically determined skin disorder).
Although there is no cure for NM, it is possible, and common for many people live healthy active lives even with moderate to severe cases. Research continues to seek ways to ameliorate debilitating symptoms and lengthen the life-span in quality ways for those affected. Some people have seen mild improvements in secretion handling, energy level, and physical functioning with supplemental L-tyrosine, an amino acid that is available through health centers. Some symptoms may worsen as the patient ages. Muscle loss increases with age naturally, but it is even more significant with nemaline myopathy.
Central hypoventilation syndrome (CHS) is a respiratory disorder that results in respiratory arrest during sleep. CHS can either be congenital (CCHS) or acquired (ACHS) later in life. It is fatal if untreated. It is also known as Ondine's curse.
ACHS can develop as a result of severe injury or trauma to the brain or brainstem. Congenital cases are very rare and involve a failure of autonomic control of breathing. In 2006, there were only about 200 known cases worldwide. As of 2008, only 1000 total cases were known. The diagnosis may be delayed because of variations in the severity of the manifestations or lack of awareness in the medical community, particularly in milder cases. However, as there have been cases where asymptomatic family members also were found to have CCHS, it may be that these figures only reflect those found to require mechanical ventilation. In all cases, episodes of apnea occur in sleep, but in a few patients, at the most severe end of the spectrum, apnea also occurs while awake.
Although rare, cases of long-term untreated CCHS have been reported and are termed late onset CCHS (LO-CCHS). Cases that go undiagnosed until later life and middle age, although the symptoms are usually obvious in retrospect. There have, however, even been cases of LO-CCHS where family members found to have it have been asymptomatic. Again, lack of awareness in the medical community may cause such a delay. CCHS susceptibility is not known to be affected by gender.