Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
It is a rare condition, with only approximately 60 cases reported as of 1989, and 75 cases as of 2005. However, due to the stigma of intersex conditions and the issues of keeping accurate statistics and records among doctors, it is likely there are more cases than reported.
Treatment includes androgen (testosterone) supplementation to artificially initiate puberty, testicular prosthetic implantation, and psychological support. Gender Dysphoria may result in anorchic individuals who are assigned male at birth and raised as male despite lacking the necessary masculinizing hormones during prenatal, childhood, and adolescent development. Anorchic individuals who have a female identity may be administered estrogen alone in place of testosterone as no androgen blockers are necessary due to the lack of gonads.
Congenital anomalies like cryptorchidism, renal agenesis/dysplasia, musculoskeletal and cardiopulmonary anomalies are also common (>50% cases), hence evaluation of the patient for internal anomalies is mandatory.
Although aphallia can occur in any body type, it is considered a substantially more troublesome problem with those who have testes present, and has in the past sometimes been considered justification for assigning and rearing a genetically male infant as a girl. After the theory in the 1950s that gender as a social construct was purely nurture and so an individual child could be raised early on and into one gender or the other regardless of their genetics or brain chemistry. Intersex people generally advocate harshly against coercive genital reassignment however, and encourage infants to be raised choosing their own gender identity. The nurture theory has been largely abandoned and cases of trying to rear children this way have not proven to be successful transitions.
In newborn period or infancy, feminizing operations are recommended for treatment of penile agenesis, but after 2 years, as sexual identification of the patients has appeared, it is advised to perform masculinizing operations in order not to disturb the child psychologically.
Recent advances in surgical phalloplasty techniques have provided additional options for those still interested in pursuing surgery.
Anorchia (or anorchism) is an XY disorder of sex development in which individuals have both testes absent at birth. Within a few weeks of fertilization, the embryo develops rudimentary gonads (testes), which produce hormones responsible for the development of the reproductive system. If the testes fail to develop within eight weeks, the baby will develop female genitalia (see Swyer syndrome). If the testes begin to develop but are lost or cease to function between eight and 10 weeks, the baby will have ambiguous genitalia when it is born. However, if the testes are lost after 14 weeks, the baby will have partial male genitalia with the notable absence of gonads.
Tests include observable lack of testes, low testosterone levels (typical female levels), elevated follicle stimulating hormone and luteinizing hormone levels, XY karyotype, ultrasound or magnetic resonance imaging showing absent gonadal tissue, low bone density, low anti-Müllerian hormone levels, and surgical exploration for evidence of male gonadal tissue.
Clitoromegaly is a rare condition and can be either present by birth or acquired later in life.
If present at birth, congenital adrenal hyperplasia can be one of the causes, since in this condition the adrenal gland of the female fetus produces additional androgens and the newborn baby has ambiguous genitalia which are not clearly male or female. In pregnant women who received norethisterone during pregnancy, masculinization of the fetus occurs, resulting in hypertrophy of the clitoris; however, this is rarely seen nowadays due to use of safer progestogens. It can also be caused by the autosomal recessive congenital disorder known as Fraser syndrome.
In acquired clitoromegaly, the main cause is endocrine hormonal imbalance affecting the adult woman, including polycystic ovarian syndrome (PCOS) and hyperthecosis. Acquired clitoromegaly may also be caused by pathologies affecting the ovaries and other endocrine glands. These pathologies may include virulent (such as arrhenoblastoma) and neurofibromatosic tumors. Another cause is clitoral cysts. Sometimes there may be no obvious clinical or hormonal reason.
Female bodybuilders and athletes who use androgens, primarily to enhance muscular growth, strength and appearance , may also experience clearly evident enlargement of the clitoris and increases in libido. Women who use testosterone for therapeutic reasons (treating low libido, averting osteoporosis, as part of an anti-depressant regimen, etc.) experience some enlargement of the clitoris, although the dosages warranted for these conditions are much lower. Pseudoclitoromegaly or pseudohypertrophy of the clitoris "has been reported in small girls due to masturbation: manipulations of the skin of prepuce leads to repeated mechanical trauma, which expands the prepuce and labia minora, thus imitating true clitoral enlargement".
In "Atlas of Human Sex Anatomy (1949)" by Robert Latou Dickinson, the "typical" clitoris is defined as having a crosswise width of 3 to 4 mm (0.12 - 0.16 inches) and a lengthwise width of 4 to 5 mm (0.16 - 0.20 inches). On the other hand, in Obstetrics and Gynecology medical literature, a frequent definition of clitoromegaly is when there is a clitoral index (product of lengthwise and crosswise widths) of greater than 35 mm (0.05 inches), which is almost twice the size given above for an "average" sized clitoral hood.
In most full-term infant boys with cryptorchidism but no other genital abnormalities, a cause cannot be found, making this a common, sporadic, unexplained (idiopathic) birth defect. A combination of genetics, maternal health, and other environmental factors may disrupt the hormones and physical changes that influence the development of the testicles.
- Severely premature infants can be born before descent of testes. Low birth weight is also a known factor.
- A contributing role of environmental chemicals called endocrine disruptors that interfere with normal fetal hormone balance has been proposed. The Mayo Clinic lists "parents' exposure to some pesticides" as a known risk factor.
- Diabetes and obesity in the mother.
- Risk factors may include exposure to regular alcohol consumption during pregnancy (5 or more drinks per week, associated with a 3x increase in cryptorchidism, when compared to non-drinking mothers. Cigarette smoking is also a known risk factor.
- Family history of undescended testicle or other problems of genital development.
- Cryptorchidism occurs at a much higher rate in a large number of congenital malformation syndromes. Among the more common are Down syndrome Prader–Willi syndrome, and Noonan syndrome.
- In vitro fertilization, use of cosmetics by the mother, and preeclampsia have also been recognized as risk factors for development of cryptorchidism.
In 2008 a study was published that investigated the possible relationship between cryptorchidism and prenatal exposure to a chemical called phthalate (DEHP) which is used in the manufacture of plastics. The researchers found a significant association between higher levels of DEHP metabolites in the pregnant mothers and several sex-related changes, including incomplete descent of the testes in their sons. According to the lead author of the study, a national survey found that 25% of U.S. women had phthalate levels similar to the levels that were found to be associated with sexual abnormalities.
A 2010 study published in the European medical journal "Human Reproduction" examined the prevalence of congenital cryptorchidism among offspring whose mothers had taken mild analgesics, primarily over-the-counter pain medications including ibuprofen (e.g. Advil) and paracetamol (acetaminophen). Combining the results from a survey of pregnant women prior to their due date in correlation with the health of their children and an "ex vivo" rat model, the study found that pregnant women who had been exposed to mild analgesics had a higher prevalence of baby boys born with congenital cryptorchidism.
New insight into the testicular descent mechanism has been hypothesized by the concept of a male programming window (MPW) derived from animal studies. According to this concept, testicular descent status is "set" during the period from 8 to 14 weeks of gestation in humans. Undescended testis is a result of disruption in androgen levels only during this programming window.
Nearly all mammals display sex-dimorphic reproductive and sexual behavior (e.g., lordosis and mounting in rodents). Much research has made it clear that prenatal and early postnatal androgens play a role in the differentiation of most mammalian brains. Experimental manipulation of androgen levels in utero or shortly after birth can alter adult reproductive behavior.
Girls and women with CAH constitute the majority of genetic females with normal internal reproductive hormones who have been exposed to male levels of testosterone throughout their prenatal lives. Milder degrees of continuing androgen exposure continue throughout childhood and adolescence as a consequence of the imperfections of current glucocorticoid treatment for CAH. The psychosexual development of these girls and women has been analyzed as evidence of the role of androgens in human sex-dimorphic behaviors.
Girls with CAH have repeatedly been reported to spend more time with "sex-atypical" toys and "rough-and-tumble" play than unaffected sisters. These differences continue into adolescent, as expressed in social behaviors, leisure activities, and career interests. Interest in babies and becoming mothers is significantly lower by most measures.
Cognitive effects are less clear, and reports have been contradictory. Two studies reported spatial abilities above the average for sisters and for girls in general. Other evidence in males with and without androgen deficiencies suggests that androgens may play a role in these aptitudes.
However, gender identity of girls and women with CAH is nearly always unequivocally female. Sexual orientation is more mixed, though the majority are heterosexual. In one study, 27% of women with CAH were rated as bisexual in their orientations. Abnormalities of body image due to the effects of the disease likely play a role in the sexual development of these women, and one cannot conclude that the androgens are the major determinant of their sexuality.
During embryogenesis, without any external influences for or against, the human reproductive system is intrinsically conditioned to give rise to a female reproductive organisation.
As a result, if a gonad cannot express its sexual identity via its hormones—as in gonadal dysgenesis—then the affected person, no matter whether their chromosomes are XY or XX, will develop external female genitalia. Internal female genitalia, primarily the uterus, may or may not be present depending on the cause of the disorder.
In both sexes, the commencement and progression of puberty require functional gonads that will work in harmony with the hypothalamic and pituitary glands to produce adequate hormones.
For this reason, in gonadal dysgenesis the accompanying hormonal failure also prevents the development of secondary sex characteristics in either sex, resulting in a sexually infantile female appearance and infertility.
The degree to which individuals with XX male syndrome develop the male phenotype is variable, even among SRY-positive individuals. A completely male phenotype usually develops in the presence of the SRY gene but, in some cases, the presence of the SRY gene can result in internal and/or external genitalia ambiguities. Normal XX females undergo X inactivation during which one copy of the X chromosome is silenced. It is thought that X inactivation in XX males may account for the genital ambiguities and incomplete masculinization seen in SRY-positive XX males. The X chromosome with the SRY gene is preferentially chosen to be the active X chromosome 90% of the time, which is why a complete male phenotype is often seen in SRY-positive XX males. In the remaining 10%, X inactivation spreads to include a portion of the SRY gene, resulting in incomplete masculinization.
Masculinization of SRY-negative XX males is dependent upon which genes have mutations and at what point in development these mutations occur.
XX male syndrome is a rare congenital condition where an individual with a female genotype has phenotypically male characteristics that can vary between cases. In 90% of these individuals the syndrome is caused by unequal crossing over between X and Y chromosomes during meiosis in the father, and results in the X chromosome containing the SRY gene, as opposed to the Y chromosome where it is normally found. When the X with the SRY gene combines with a normal X from the mother during fertilization, the result is an XX male. Less common are SRY-negative XX males which can be caused by a mutation in an autosomal or X chromosomal gene. The masculinization of XX males is variable.
This syndrome is diagnosed through various detection methods and occurs in approximately 1:20 000 newborn males, making it less common than Klinefelter syndrome. Treatment is medically unnecessary, although some individuals choose to undergo treatments to make them appear more male or female. It is also called de la Chapelle syndrome, for Albert de la Chapelle, who characterized it in 1972.
Infertility observed in adult males with congenital adrenal hyperplasia (CAH) has been associated with testicular adrenal rest tumors (TART) that may originate during childhood. TART in prepubertal males with classic CAH could be found during childhood (20%). Martinez-Aguayo et al. reported differences in markers of gonadal function in a subgroup of patients, especially in those with inadequate control.
One of the strongest arguments for early orchiopexy is reducing the risk of testicular cancer. About 1 in 500 men born with one or both testes undescended develops testicular cancer, roughly a 4 to 40 fold increased risk. The peak incidence occurs in the 3rd and 4th decades of life. The risk is higher for intra-abdominal testes and somewhat lower for inguinal testes, but even the "normally descended" testis of a man whose other testis was undescended has about a 20% higher cancer risk than those of other men.
The most common type of testicular cancer occurring in undescended testes is seminoma. It is usually treatable if caught early, so urologists often recommend that boys who had orchiopexy as infants be taught testicular self-examination, to recognize testicular masses and seek early medical care for them. Cancer developing in an intra-abdominal testis would be unlikely to be recognized before considerable growth and spread, and one of the advantages of orchiopexy is that a mass developing in a scrotal testis is far easier to recognize than an intra-abdominal mass.
It was originally felt that orchidopexy resulted in easier detection of testis cancer but did not lower the risk of actually developing cancer. However, recent data has resulted in a paradigm shift. The New England Journal of Medicine published in 2007 that orchidopexy performed before puberty resulted in a significantly reduced risk of testicular cancer than if done after puberty.
The risk of malignancy in the undescended testis is 4 to 10 times higher than that in the general population and is approximately 1 in 80 with a unilateral undescended testis and 1 in 40 to 1 in 50 for bilateral undescended testes. The peak age for this tumor is 15–45 yr. The most common tumor developing in an undescended testis is a seminoma (65%); in contrast, after orchiopexy, seminomas represent only 30% of testis tumors.
The condition may be due to:
- Turner syndrome, and its variations (i.e. mosaicism)
- XX gonadal dysgenesis, also pure gonadal dysgenesis, 46,XX
- Swyer syndrome, also pure gonadal dysgenesis, 46,XY
- Perrault syndrome, XX gonadal dysgenesis + sensorineural hearing loss
- Mixed gonadal dysgenesis
- Exposure to environmental endocrine disruptors
Alternatively, female genital diseases can be more strictly classified by location of the disease, which, in turn, can be broadly divided between diseases that affect the female internal genitalia and those that affect the female external genitalia.
A low socioeconomic status in a deprived neighborhood may include exposure to “environmental stressors and risk factors.” Socioeconomic inequalities are commonly measured by the Cartairs-Morris score, Index of Multiple Deprivation, Townsend deprivation index, and the Jarman score. The Jarman score, for example, considers “unemployment, overcrowding, single parents, under-fives, elderly living alone, ethnicity, low social class and residential mobility.” In Vos’ meta-analysis these indices are used to view the effect of low SES neighborhoods on maternal health. In the meta-analysis, data from individual studies were collected from 1985 up until 2008. Vos concludes that a correlation exists between prenatal adversities and deprived neighborhoods. Other studies have shown that low SES is closely associated with the development of the fetus in utero and growth retardation. Studies also suggest that children born in low SES families are “likely to be born prematurely, at low birth weight, or with asphyxia, a birth defect, a disability, fetal alcohol syndrome, or AIDS.” Bradley and Corwyn also suggest that congenital disorders arise from the mother’s lack of nutrition, a poor lifestyle, maternal substance abuse and “living in a neighborhood that contains hazards affecting fetal development (toxic waste dumps).” In a meta-analysis that viewed how inequalities influenced maternal health, it was suggested that deprived neighborhoods often promoted behaviors such as smoking, drug and alcohol use. After controlling for socioeconomic factors and ethnicity, several individual studies demonstrated an association with outcomes such as perinatal mortality and preterm birth.
A female genital disease is a condition that affects the female reproductive system.
The incidence varies geographically. In the United States, congenital adrenal hyperplasia is particularly common in Native Americans and Yupik Eskimos (incidence ). Among American Caucasians, the incidence is approximately ).
45,X/46,XY mosaicism, also known as X0/XY mosaicism and mixed gonadal dysgenesis, is a rare disorder of sex development in humans associated with sex chromosome aneuploidy and mosaicism of the Y chromosome. This is called a mosaic karyotype because, like tiles in mosaic floors or walls, there is more than one type of cell.
The clinical manifestations are highly variable, ranging from partial virilisation and ambiguous genitalia at birth, to patients with a completely male or female gonads. Most individuals with this karyotype have apparently normal male genitalia, and a minority with female genitalia, with a significant number of individuals showing genital abnormalities or intersex characteristics. A significantly higher than normal number of other developmental abnormalities are also found in individuals with X0/XY mosaicism. Psychomotor development is normal.
In a normal situation, all the cells in an individual will have 46 chromosomes with one being an X and one a Y or with two Xs. However, sometimes during this complicated early copying process (DNA replication and cell division), one chromosome can be lost. In 45,X/46,XY, most or all of the Y chromosome is lost in one of the newly created cells. All the cells then made from this cell will lack the Y chromosome. All the cells created from the cells that have not lost the Y chromosome will be XY. The 46,XY cells will continue to multiply at the same time as the 45,X cells multiply. The embryo, then the fetus and then the baby will have what is called a 45,X/46,XY constitution. This is called a
mosaic karyotype because, like tiles in mosaic floors or walls, there is more than one type of cell.
There are many chromosomal variations that cause the 45,X/46,XY karyotype, including malformation (isodicentricism) of the Y chromosomes, deletions of Y chromosome or translocations of Y chromosome segments. These rearrangements of the Y chromosome can lead to partial expression of the SRY gene which may lead to abnormal genitals and testosterone levels.
Fraser syndrome is a disorder that affects the development of the child prior to birth. Infants born with Fraser syndrome often have eyes that are malformed and completely covered by skin. Also the child is born with fingers and toes that are fused together along with abnormalities within the urine tract. As this disorder relates to vaginal atresia, infants born with Fraser syndrome are also born with malformations in their genitals.
The prognosis for vaginal atresia is one that is complicated. There are variations in patients' anatomic findings as well as an absence in consistent surgical techniques which makes it difficult to give a prognosis for this condition. Along with other conditions that give rise to an abnormal perineum (i.e. ambiguous genitalia and other various abnormalities that range from cloaca to urogenital sinus), individuals with vaginal atresia often report reconstruction as an outcome of treatment. Due to this, it is difficult to compare outcomes between individuals with vaginal atresia.
Most XY children are so undervirilized that they are raised as girls. The testes are uniformly nonfunctional and undescended; they are removed when the diagnosis is made due to the risk of cancer development in these tissues.
For the survivors of the atomic bombing of Hiroshima and Nagasaki, who are known as the "Hibakusha", no statistically demonstrable increase of birth defects/congenital malformations was found among their later conceived children, or found in the later conceived children of cancer survivors who had previously received radiotherapy.
The surviving women of Hiroshima and Nagasaki who were able to conceive, though exposed to substantial amounts of radiation, later had children with no higher incidence of abnormalities/birth defects than in the Japanese population as a whole.
Relatively few studies have researched the effects of paternal radiation exposure on offspring. Following the Chernobyl disaster, it was assumed in the 1990s that the germ line of irradiated fathers suffered minisatellite mutations in the DNA, which was inherited by descendants. more recently however, the World Health Organization states, "children conceived before or after their father's exposure showed no statistically significant differences in mutation frequencies". This statistically insignificant increase was also seen by independent researchers analyzing the children of the liquidators. Animal studies have shown that incomparably "massive" doses of X-ray irradiation of male mice resulted in birth defects of the offspring.
In the 1980s, a relatively high prevalence of pediatric leukemia cases in children living near a nuclear processing plant in West Cumbria, UK, led researchers to investigate whether the cancer was a result of paternal radiation exposure. A significant association between paternal irradiation and offspring cancer was found, but further research areas close to other nuclear processing plants did not produce the same results. Later this was determined to be the Seascale cluster in which the leading hypothesis is the influx of foreign workers, who have a different rate of leukemia within their race than the British average, resulted in the observed cluster of 6 children more than expected around Cumbria.
The sex steroid consequences of severe 3β-HSD CAH are unique among the congenital adrenal hyperplasias: it is the only form of CAH that can produce ambiguity in both sexes. As with 21-hydroxylase deficient CAH, the degree of severity can determine the magnitude of over- or undervirilization.
In an XX (genetically female) fetus, elevated amounts of DHEA can produce moderate virilization by conversion in the liver to testosterone. Virilization of genetic females is partial, often mild, and rarely raises assignment questions. The issues surrounding corrective surgery of the virilized female genitalia are the same as for moderate 21-hydroxylase deficiency but surgery is rarely considered desirable.
The extent to which mild 3β-HSD CAH can cause early appearance of pubic hair and other aspects of hyperandrogenism in later childhood or adolescence is unsettled. Early reports about 20 years ago suggesting that mild forms of 3β-HSD CAH comprised significant proportions of girls with premature pubic hair or older women with hirsutism have not been confirmed and it now appears that premature pubarche in childhood and hirsutism after adolescence are not common manifestations of 3β-HSD CAH.
Undervirilization of genetic males with 3β-HSD CAH occurs because synthesis of testosterone is impaired in both adrenals and testes. Although DHEA is elevated, it is a weak androgen and too little testosterone is produced in the liver to offset the deficiency of testicular testosterone. The degree of undervirilization is more variable, from mild to severe. Management issues are those of an undervirilized male with normal sensitivity to testosterone.
If the infant boy is only mildly undervirilized, the hypospadias can be surgically repaired, testes brought into the scrotum, and testosterone supplied at puberty.
Management decisions are more difficult for a moderately or severely undervirilized genetic male whose testes are in the abdomen and whose genitalia look at least as much female as male. Male sex can assigned and major reconstructive surgery done to close the midline of the perineum and move the testes into a constructed scrotum. Female sex can be assigned and the testes removed and vagina enlarged surgically. A recently advocated third choice would be to assign either sex and defer surgery to adolescence. Each approach carries its own disadvantages and risks. Children and their families are different enough that none of the courses is appropriate for all.