Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
A multitude of conditions may lead to the development of torticollis including: muscular fibrosis, congenital spine abnormalities, or toxic or traumatic brain injury.
A rough categorization discerns between congenital torticollis and acquired torticollis.
Other categories include:
- Osseous
- Traumatic
- CNS/PNS
- Ocular
- Non-muscular soft tissue
- Spasmodic
- Drug induced
Causes for a head tilt in domestic animals are either diseases of the central or peripheral vestibular system or relieving posture due to neck pain.
Known causes for head tilt in domestic animals include:
- "Encephalitozoon cuniculi" (or "E. cuniculi") infection in rabbits
- Inner ear infection
- Hypothyroidism in dogs
- Disease of the VIIIth cranial nerve the N. Vestibulocochlearis through trauma, infection, inflammation or neoplasia
- Disease of the brain stem through either stroke, trauma or neoplasia
- Damage to the vestibular organ due to toxicity, inflammation or impaired blood supply
- Geriatric vestibular syndrome in dogs
Arthrogryposis could also be caused by intrinsic factors. This includes molecular, muscle- and connective tissue development disorders or neurological abnormalities.
The malformations of arthrogryposis can be secondary to environmental factors such as: decreased intrauterine movement, oligohydramnios (low volume or abnormal distribution of intrauterine fluid), and defects in the fetal blood supply. Other causes could be: hyperthermia, limb immobilization and viral infections. Myasthenia gravis of the mother leads also in rare cases to arthrogryposis. The major cause in humans is fetal akinesia. However, this is disputed lately.
Pathology is insertional tendinopathy of the medius and tendons and enlargement of the associated bursa.
Gluteals remain inactive in a seated position. Movements that require muscles become more difficult; stress is put on the spine.
Jugular foramen syndrome, or Vernet's syndrome is characterized by the paresis of 9th–11th (with or without 12th) cranial nerves together.
Spasmodic torticollis is one of the most common forms of dystonia seen in neurology clinics, occurring in approximately 0.390% of the United States population in 2007 (390 per 100,000). Worldwide, it has been reported that the incidence rate of spasmodic torticollis is at least 1.2 per 100,000 person years, and a prevalence rate of 57 per 1 million.
The exact prevalence of the disorder is not known; several family and population studies show that as many as 25% of cervical dystonia patients have relatives that are undiagnosed. Studies have shown that spasmodic torticollis is not diagnosed immediately; many patients are diagnosed well after a year of seeking medical attention. A survey of 59 patients diagnosed with spasmodic torticollis show that 43% of the patients visited at least four physicians before the diagnosis was made.
There is a higher prevalence of spasmodic torticollis in females; females are 1.5 times more likely to develop spasmodic torticollis than males. The prevalence rate of spasmodic torticollis also increases with age, most patients show symptoms from ages 50–69. The average onset age of spasmodic torticollis is 41.
Other causes may include:
- Diabetes mellitus
- Facial nerve paralysis, sometimes bilateral, is a common manifestation of sarcoidosis of the nervous system, neurosarcoidosis.
- Bilateral facial nerve paralysis may occur in Guillain–Barré syndrome, an autoimmune condition of the peripheral nervous system.
- Moebius syndrome is a bilateral facial paralysis resulting from the underdevelopment of the VII cranial nerve (facial nerve), which is present at birth. The VI cranial nerve, which controls lateral eye movement, is also affected, so people with Moebius syndrome cannot form facial expression or move their eyes from side to side. Moebius syndrome is extremely rare, and its cause or causes are not known.
When other conditions lead to spasmodic torticollis, it is said that the spasmodic torticollis is secondary. A variety of conditions can cause brain injury, from external factors to diseases. These conditions are listed below:
- Perinatal (during birth) cerebral injury
- Kernicterus
- Cerebrovascular diseases
- Drug induced
- Central nervous system tumor
- Peripheral or central trauma
- Infectious or post infectious encephalopathies
- Toxins
- Metabolic
- Paraneoplastic syndromes
- Central pontine myelinolysis
Secondary spasmodic torticollis is diagnosed when any of the following are present: history of exogenous insult or exposure, neurological abnormalities other than dystonia, abnormalities on brain imaging, particularly in the basal ganglia.
Congenital distal spinal muscular atrophy is caused by a mutation of the "TRPV4" gene found on the 12q23-12q24.1. The mutation causes an affected individual to have lower levels of "TRPV4" expression. This deficiency can lead to abnormal osmotic regulation. Congenital dSMA is genetically heterogeneous, meaning a mutation on this gene can cause a plethora of other phenotypically related or phenotypically unrelated diseases depending on the region that is mutated.
Central facial palsy can be caused by a lacunar infarct affecting fibers in the internal capsule going to the nucleus. The facial nucleus itself can be affected by infarcts of the pontine arteries.
Congenital distal spinal muscular atrophy (congenital dSMA) is a hereditary genetic condition characterized by muscle wasting (atrophy), particularly of distal muscles in legs and hands, and by early-onset contractures (permanent shortening of a muscle or joint) of the hip, knee, and ankle. Affected individuals often have shorter lower limbs relative to the trunk and upper limbs. The condition is a result of a loss of anterior horn cells localized to lumbar and cervical regions of the spinal cord early in infancy, which in turn is caused by a mutation of the "TRPV4" gene. The disorder is inherited in an autosomal dominant manner. Arm muscle and function, as well as cardiac and respiratory functions are typically well preserved.
The congenital absence of the gluteal muscle was described in 1976, as occurring in a brother and sister with absence of gluteal muscles and with spina bifida occulta. It was thought to be caused by an autosomal recessive gene.
Edgar "et al." (2012) reported the case of a 15-year-old white male with congenital absence of the "gluteus maximus" muscles associated with spina bifida occulta, learning disability, optic nerve hypoplasia, scoliosis, and central nervous system hamartomas.
If gluteal muscles were absent the following actions would not be possible. The "gluteus maximus" extends the thigh at the hip in actions like stair climbing, running or walking. It also abducts the thigh, elevates the trunk and also prevents the trunk of a person from moving forward or backward when the rest of the body is in movement. The "gluteal maximus" also aids in stabilizing the femur and the tibia. The "gluteas minimus" and "medius" are also part of the gluteal muscles. If these muscles were missing, the leg would not be able to abduct or medial rotate the thigh. The body would also not be able to shift weight from one side to the other when one foot is on the ground but not another. Considering this a rare congenital disease with other complications, walking would also not be possible in the list of additional symptoms above.
Symptoms of this syndrome are consequences of this paresis. As such, in an affected patient, you may find:
- dysphonia/hoarseness
- soft palate dropping
- deviation of the uvula towards the normal side
- dysphagia
- loss of sensory function from the posterior 1/3 of the tongue
- decrease in the parotid gland secretion
- loss of gag reflex
- sternocleidomastoid and trapezius muscles paresis
The cause of fibular hemimelia is unclear. Purportedly, there have been some incidents of genetic distribution in a family; however, this does not account for all cases. Maternal viral infections, embryonic trauma, teratogenic environmental exposures or vascular dysgenesis (failure of the embryo to form a satisfactory blood supply) between four and seven weeks gestation are considered possible causes.
In an experimental mouse model, change in the expression of a homeobox gene led to similar, but bilateral, fibular defects.
Neurotoxin may act on the neuromuscular junction either post synaptically or presynaptically as there are several different forms of toxins that the NMJ is sensitive to.(reference 14) Common mechanisms of action include blockage of acetylcholine release at the synapse thus causing the NMJ to become abnormal in function.(reference 12)
Ullrich congenital muscular dystrophy is a form of congenital muscular dystrophy.It is associated with variants of type VI collagen, it is commonly associated with muscle weakness and respiratory problems, though cardiac issues are not associated with this type of CMD. It is named after Otto Ullrich, who is also known for the Ullrich-Turner syndrome.
The exact cause of congenital amputation is unknown and can result from a number of causes. However, most cases show that the first three months in a pregnancy are when most birth defects occur because that is when the organs of the fetus are beginning to form. One common cause is amniotic band syndrome, which occurs when the inner fetal membrane (amnion) ruptures without injury to the outer membrane (chorion). Fibrous bands from the ruptured amnion float in the amniotic fluid and can get entangled with the fetus, thus reducing blood supply to the developing limbs to such an extent that the limbs can become strangulated; the tissues die and are absorbed into the amniotic fluid. A baby with congenital amputation can be missing a portion of a limb or the entire limb, which results in the complete absence of a limb beyond a certain point where only a stump is left is known as transverse deficiency or amelia. When a specific part is missing, it is referred to as longitudinal deficiency. Finally, phocomelia occurs when only a mid-portion of a limb is missing; for example when the hands or feet are directly attached to the trunk of the body.
Amnion ruptures can be caused by:
- teratogenic drugs (e.g. thalidomide, which causes phocomelia), or environmental chemicals
- ionizing radiation (atomic weapons, radioiodine, radiation therapy)
- infections
- metabolic imbalance
- trauma
Congenital amputation is the least common reason for amputation, but it is projected that one in 2000 babies are born each year with a missing or deformed limb. During certain periods in history, an increase in congenital amputations has been documented. One example includes the thalidomide tragedy that occurred in the 1960s when pregnant mothers were given a tranquilizer that contained the harmful drug, which produced an increase in children born without limbs. Another example was the 1986 Chernobyl catastrophe in Ukraine, where the radiation exposure caused many children to be born with abnormal or missing limbs .
Fibular hemimelia or longitudinal fibular deficiency is "the congenital absence of the fibula and it is the most common congenital absence of long bone of the extremities." It is the shortening of the fibula at birth, or the complete lack thereof. In humans, the disorder can be noted by ultrasound in utero to prepare for amputation after birth or complex bone lengthening surgery. The amputation usually takes place at six months with removal of portions of the legs to prepare them for prosthetic use. The other treatments which include repeated corrective osteotomies and leg-lengthening surgery (Ilizarov apparatus) are costly and associated with residual deformity.
Myasthenia gravis is the most common neuromuscular disease affecting function of the end plate in patients. It is present in 100 people out of 1,000,000 in the population, and its onset is usually in either younger or older individuals.(reference 14)
Acquired myasthenia gravis is the most common neuromuscular junction disease.(reference 7) Important observations were made by Patrick and Lindstrom in 1973 when they found that antibodies attacking the acetylcholine receptors were present in around 85% of cases of myasthenia gravis.(reference renamed form 13)(reference 36) The remaining diseases were also a result of antibody attacks on vital proteins, but instead of the acetylcholine receptor, the culprits were MuSK, a muscle-specific serum kinase, and lipoprotein receptor-related protein.(reference 36) So these mechanisms describe myasthenia gravis that is acquired, and not congenital, affecting these vital proteins by an immunological response against self-antigens. The cases not caused by antibodies against the acetylcholine receptors became by convention called seronegative myasthenia gravis.(reference 37) The term seronegative came about because scientists would be testing for acetylcholine receptor antibodies in patients that had myasthenia gravis resulting in negative tests in the serum. This does not imply that there are no antibodies present, but this terminology only became present because scientists were testing for the wrong antigen.(reference 36)(reference 38)
Neonatal myasthenia gravis is a very rare condition in which a mother with myasthenia gravis passes down her antibodies to her infant through the placenta, causing the it to be born with antibodies that will attach self-antigens.(reference 12)
Drug-induced myasthenia gravis is also a very rare condition in which pharmacological drugs cause a blockade or disruption of the NMJ machinery.(reference 12) Robert W. Barrons summarizes the possible causes of drug-induced myasthenia gravis: "Prednisone was most commonly implicated as aggravating myasthenia gravis, and D-penicillamine was most commonly associated with myasthenic syndrome. The greatest frequency of drug-induced neuromuscular blockade was seen with aminoglycoside-induced postoperative respiratory depression. However, drugs most likely to impact myasthenic patients negatively are those used in the treatment of the disease. These include overuse of anticholinesterase drugs, high-dose prednisone, and anesthesia and neuromuscular blockers for thymectomy."(reference 39)
Studies suggest that prenatal care for mothers during their pregnancies can prevent congenital amputation. Knowing environmental and genetic risks is also important. Heavy exposure to chemicals, smoking, alcohol, poor diet, or engaging in any other teratogenic activities while pregnant can increase the risk of having a child born with a congenital amputation. Folic acid is a multivitamin that has been found to reduce birth defects.
The cause of congenital fourth nerve palsy is unclear in most cases. It may be neurogenic in origin, due to a dysgenesis of the CN IV nucleus or nerve, but a clinically similar palsy may result from absence or mechanical dysfunction (e.g., abnormal laxity) of the superior oblique tendon. Usually unilateral, congenital fourth nerve palsies can also occur bilaterally. Bilateral congenital fourth nerve palsy may be unmasked only after corrective surgery of one eye for what was thought to be a unilateral palsy.
- "For acquired fourth nerve palsy, see fourth nerve palsy"
Congenital fourth nerve palsy is a condition present at birth characterized by a vertical misalignment of the eyes due to a weakness or paralysis of the superior oblique muscle.
Other names for fourth nerve palsy include superior oblique palsy and trochlear nerve palsy.
When looking to the right/left the nerve/muscle isn't strong enough or is too long and the eye drifts up.
Genetic counseling for VWS involves discussion of disease transmission in the autosomal dominant manner and possibilities for penetrance and expression in offspring. Autosomal dominance means affected parents have a 50% chance of passing on their mutated "IRF6" allele to a their child. Furthermore, if a cleft patient has lip pits, he or she has a ten times greater risk of having a child with cleft lip with or without cleft palate than a cleft patient who does not have lip pits. Types of clefting between parents and affected children are significantly associated; however, different types of clefts may occur horizontally and vertically within the same pedigree. In cases where clefting is the only symptom, a complete family history must be taken to ensure the patient does not have non-syndromic clefting.
Medical procedures are the most common cause of injury to the spinal accessory nerve. In particular, radical neck dissection and cervical lymph node biopsy are among the most common surgical procedures that result in spinal accessory nerve damage. London notes that a failure to rapidly identify spinal accessory nerve damage may exacerbate the problem, as early intervention leads to improved outcomes.