Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Neonatal thyroid screening programs from all over the world have revealed that congenital hypothyroidism (CH) occurs with an incidence of 1:3000 to 1:4000. The differences in CH-incidence are more likely due to iodine deficiency thyroid disorders or to the type of screening method than to ethnic affiliation. CH is caused by an absent or defective thyroid gland classified into agenesis (22-42%), ectopy (35-42%) and gland in place defects (24-36%). It is also found to be of increased association with female sex and gestational age >40 weeks.
Most children born with congenital hypothyroidism and correctly treated with thyroxine grow and develop normally in all respects. Even most of those with athyreosis and undetectable T levels at birth develop with normal intelligence, although as a population academic performance tends to be below that of siblings and mild learning problems occur in some.
Congenital hypothyroidism is the most common preventable cause of intellectual disability. Few treatments in the practice of medicine provide as large a benefit for as small an effort.
The developmental quotient (DQ, as per Gesell Developmental Schedules) of children with hypothyroidism at age 24 months that have received treatment within the first 3 weeks of birth is summarised below:
Acquired hypertrichosis lanuginosa is commonly present with cancer. This condition is also linked to metabolic disorders, such as anorexia, hormone imbalances, such as hyperthyroidism, or as a side effect of certain drugs.
Acquired generalized hypertrichosis may be caused by cancer. The resulting hair growth is known as malignant down. The mechanism behind cancer induced hypertrichosis is unknown. Oral and topical minoxidil treatments are also known to cause acquired generalized hypertrichosis.
The exact genetic mutation that causes congenital circumscribed, localized, and nevoid hypertrichosis is unknown.
IHH is divided into two syndromes: IHH with olfactory alterations or anosmia, Kallmann syndrome and IHH with normal smell (normosmic IHH).
Kallmann syndrome is responsible for approximately 50% of all cases of the condition. It is associated with mutations in "KAL1", "FGFR1/FGF8", "FGF17", "IL17RD", "PROKR2", "NELF", "CHD7"(which positively regulates GnRH secretion), HS6ST1, "FLRT3", "SPRY4", DUSP6, "SEMA3A", and "WDR11 (gene)", genes which are related to defects in neuronal migration.
Gene defects associated with IHH and normal smell include "PROKR2, FGFR1, FGF8, CHD7, DUSP6," and "WDR11", as in KS, but in addition
also mutations in "KISS1R", "TACR3", GNRH1/GNRHR, LEP/LEPR, HESX1, FSHB, and LHB.
GnRH insensitivity is the second most common cause of IHH, responsible for up to 20% of cases.
A minority of less than 5-10% is due to inactivating mutations in genes which positively regulate GnRH secretion such as ,"CHD7", "KISS1R", and "TACR3".
The causes of about 25% of all IHH cases are still unknown.
Isolated hypogonadotropic hypogonadism (IHH), also called idiopathic or congenital hypogonadotropic hypogonadism (CHH), as well as isolated or congenital gonadotropin-releasing hormone deficiency (IGD) constitutes a small subset of cases of hypogonadotropic hypogonadism (HH).
IHH is due to deficiency in or insensitivity to gonadotropin-releasing hormone (GnRH), where the function and anatomy of the anterior pituitary is otherwise normal, and secondary causes of HH are not present.
The cause of congenital hyperinsulinism has been linked to anomalies in nine different genes. The diffuse form of this condition is inherited via the autosomal recessive manner(though sometimes in "autosomal dominant").
Isolated hypogonadotropic hypogonadism (IHH), also called idiopathic or congenital hypogonadotropic hypogonadism (CHH), as well as isolated or congenital gonadotropin-releasing hormone deficiency (IGD), is a condition which results in a small subset of cases of hypogonadotropic hypogonadism (HH) due to deficiency in or insensitivity to gonadotropin-releasing hormone (GnRH) where the function and anatomy of the anterior pituitary is otherwise normal and secondary causes of HH are not present.
In terms of the mechanism of congenital hyperinsulinism one sees that channel trafficking requires K channels need the shielding of ER retention signal.E282K prevents the K channel surface expression, the C-terminus (SUR1 subunit) is needed in K channel mechanism.R1215Q mutations (ABCC8 gene) affect ADP gating which in turn inhibits K channel.
Nesidioblastosis is a controversial medical term for hyperinsulinemic hypoglycemia attributed to excessive function of pancreatic beta cells with an abnormal microscopic appearance. The term was coined in the first half of the 20th century. The abnormal histologic aspects of the tissue included the presence of islet cell enlargement, islet cell dysplasia, beta cells budding from ductal epithelium, and islets in apposition to ducts.
By the 1970s, nesidioblastosis was primarily used to describe the pancreatic dysfunction associated with persistent congenital hyperinsulinism and in most cases from the 1970s until the 1980s, it was used as a synonym for what is now referred to as congenital hyperinsulinism. Most congenital hyperinsulinism is caused by different mechanisms than excessive proliferation of beta cells in a fetal pattern and the term fell into disfavor after it was recognized in the late 1980s that the characteristic tissue features were sometimes seen in pancreatic tissue from normal infants and even adults, and is not consistently associated with hyperinsulinemic hypoglycemia.
However, the term has been resurrected in recent years to describe a form of "acquired" hyperinsulinism with beta cell hyperplasia found in adults, especially after gastrointestinal surgery.
Evidence of physiologic mechanisms purporting that weight loss surgery conveys the ability to induce a more contemporary presentation of nesidioblastosis remains elusive and is of intense interest to diabetes researchers.
Micromastia can be congenital or disorder and may be unilateral or bilateral. Congenital causes include ulnar–mammary syndrome (caused by mutations in the TBX3 gene), Poland syndrome, Turner syndrome, and congenital adrenal hyperplasia. There is also a case report of familial hypoplasia of the nipples and athelia associated with mammary hypoplasia that was described in a father and his daughters. Acquired causes of micromastia include irradiation in infancy and childhood and surgical removal of prepubertal breast bud.
A low socioeconomic status in a deprived neighborhood may include exposure to “environmental stressors and risk factors.” Socioeconomic inequalities are commonly measured by the Cartairs-Morris score, Index of Multiple Deprivation, Townsend deprivation index, and the Jarman score. The Jarman score, for example, considers “unemployment, overcrowding, single parents, under-fives, elderly living alone, ethnicity, low social class and residential mobility.” In Vos’ meta-analysis these indices are used to view the effect of low SES neighborhoods on maternal health. In the meta-analysis, data from individual studies were collected from 1985 up until 2008. Vos concludes that a correlation exists between prenatal adversities and deprived neighborhoods. Other studies have shown that low SES is closely associated with the development of the fetus in utero and growth retardation. Studies also suggest that children born in low SES families are “likely to be born prematurely, at low birth weight, or with asphyxia, a birth defect, a disability, fetal alcohol syndrome, or AIDS.” Bradley and Corwyn also suggest that congenital disorders arise from the mother’s lack of nutrition, a poor lifestyle, maternal substance abuse and “living in a neighborhood that contains hazards affecting fetal development (toxic waste dumps).” In a meta-analysis that viewed how inequalities influenced maternal health, it was suggested that deprived neighborhoods often promoted behaviors such as smoking, drug and alcohol use. After controlling for socioeconomic factors and ethnicity, several individual studies demonstrated an association with outcomes such as perinatal mortality and preterm birth.
This condition has been linked to mutations in the ribosomal GTPase BMS1 gene.
Substances whose toxicity can cause congenital disorders are called "teratogens", and include certain pharmaceutical and recreational drugs in pregnancy as well as many environmental toxins in pregnancy.
A review published in 2010 identified 6 main teratogenic mechanisms associated with medication use: folate antagonism, neural crest cell disruption, endocrine disruption, oxidative stress, vascular disruption and specific receptor- or enzyme-mediated teratogenesis.
It is estimated that 10% of all birth defects are caused by prenatal exposure to a teratogenic agent. These exposures include, but are not limited to, medication or drug exposures, maternal infections and diseases, and environmental and occupational exposures. Paternal smoking use has also been linked to an increased risk of birth defects and childhood cancer for the offspring, where the paternal germline undergoes oxidative damage due to cigarette use. Teratogen-caused birth defects are potentially preventable. Studies have shown that nearly 50% of pregnant women have been exposed to at least one medication during gestation. During pregnancy, a female can also be exposed to teratogens from the contaminated clothing or toxins within the seminal fluid of a partner. An additional study found that of 200 individuals referred for genetic counseling for a teratogenic exposure, 52% were exposed to more than one potential teratogen.
The procedure to remedy micromastia is breast enlargement, most commonly augmentation mammoplasty using breast implants. Other techniques available involve using muscle flap-based reconstructive surgery techniques (latissimus dorsi and rectus abdominus muscles), microsurgical reconstruction, or fat grafting.
Another potential treatment is hormonal breast enhancement, such as with estrogens.
Microcoria is a congenital disease in which the pupils of the subject are narrower than 2 mm in diameter. Microcoria is associated with juvenile-onset glaucoma. It is also associated with Pierson syndrome chararacterized by microcoria and congenital nephrotic syndrome. The defect is in the Laminin beta 2 gene on chromosome 3p21 which encodes a protein essential to the glomerular basement membrane.
It is also part of the known manifestations of a born infant to a mother suffering from uncontrolled hyperglycemia. Other symptoms include transposition of great vessels, respiratory distress secondary to surfactant defect, sacral agensis, jitteriness, irritability, and lethargy due to rebound fetal hypoglycemia. Congenital microcoria is an autosomal dominant trait. However, it can also occur sporadically.
Aplasia cutis congenita (ACC) is a rare disorder characterized by congenital absence of skin. Frieden classified ACC in 1986 into 9 groups on the basis of location of the lesions and associated congenital anomalies. The scalp is the most commonly involved area with lesser involvement of trunk and extremities. Frieden classified ACC with fetus papyraceus as type 5. This type presents as truncal ACC with symmetrical absence of skin in stellate or butterfly pattern with or without involvement of proximal limbs.]It is the most common congenital cicatricial alopecia, and is a congenital focal absence of epidermis with or without evidence of other layers of the skin.
The exact etiology of ACC is still unclear but intrauterine infection by varicella or herpes virus, drugs such as methimazole, misoprostol, valproate, cocaine, marijuana etc., fetus papyraceus, feto-fetal transfusion, vascular coagulation defects, amniotic membrane adherence, abnormal elastic fiber biomechanical forces and trauma are implicated. It can be associated with Johanson-Blizzard syndrome, Adams-Oliver syndrome, trisomy 13, and Wolf-Hirschhorn syndrome.
It can also seen with exposure to methimazole and carbimazole in utero. This dermatological manifestation has been linked to Peptidase D haploinsufficiency and a deletion in Chromosome 19.
Observations leading to the characterization of the SLC26 family were based on research on rare human diseases. Three rare recessive diseases in humans have been shown to be caused by genes of this family. Diastrophic dysplasia, congenital chloride diarrhea, and Pendred syndrome are caused by the highly related genes SLC26A2 (first called DTDST), SLC26A3 (first called CLD or DRA), and SLC26A4 (first called PDS), respectively. Two of these diseases, diastrophic dysplasia and congenital chloride diarrhea, are Finnish heritage diseases.
Congenital chloride diarrhea (CCD, also congenital chloridorrhea or Darrow Gamble syndrome) is a genetic disorder due to an autosomal recessive mutation on chromosome 7. The mutation is in downregulated-in-adenoma (DRA), a gene that encodes a membrane protein of intestinal cells. The protein belongs to the solute carrier 26 family of membrane transport proteins. More than 20 mutations in the gene are known to date. A rare disease, CCD occurs in all parts of the world but is more common in some populations with genetic founder effects, most notably in Finland.
There have been 30 cases of Marden-Walker Syndrome reported since 1966. The first case of this was in 1966 a female infant was diagnosed with blepharophimosis, joint contractures, arachnodactyly and growth development delay. She ended up passing at 3 months due to pneumonia.
Large and especially giant congenital nevi are at higher risk for malignancy degeneration into melanoma. Because of the premalignant potential, it is an acceptable clinical practice to remove congenital nevi electively in all patients and relieve the nevocytic overload.
Hemimelia comprises
- Fibular hemimelia, Congenital longitudinal deficiency of the fibula or Fibular longitudinal meromelia
- Tibial hemimelia, Congenital longitudenal deficiency of the tibia, Congenital aplasia and dysplasia of the tibia with intact fibula, Congenital longitudinal deficiency of the tibia or Tibial longitudinal meromelia
- Radial Hemimelia, Congenital longitudinal deficiency of the radius, Radial clubhand, Radial longitudinal meromelia or Radial ray agenesis
- Ulnar hemimelia, Congenital longitudinal deficiency of the ulna, Ulnar clubhand or Ulnar longitudinal meromelia
Neurocristopathy is a diverse class of pathologies that may arise from defects in the development of tissues containing cells commonly derived from the embryonic neural crest cell lineage. The term was coined by Robert P. Bolande in 1974.
Accepted examples are piebaldism, Waardenburg syndrome, Hirschsprung disease, Ondine's curse (congenital central hypoventilation syndrome), pheochromocytoma, paraganglioma, Merkel cell carcinoma, multiple endocrine neoplasia, neurofibromatosis type I, CHARGE syndrome, familial dysautonomia, DiGeorge syndrome, Axenfeld-Rieger syndrome, Goldenhar syndrome (a.k.a. hemifacial microsomia), craniofrontonasal syndrome, congenital melanocytic nevus, melanoma, and certain congenital heart defects of the outflow tract, in particular.
Multiple sclerosis has also been suggested as being neurocristopathic in origin.
The usefulness of the definition resides in its ability to refer to a potentially common etiological factor for certain neoplasms and/or congenital malformation associations that are otherwise difficult to group with other means of nosology.
The only treatment for MWS is only symptomatic, with multidisciplinary management
Studies suggest that prenatal care for mothers during their pregnancies can prevent congenital amputation. Knowing environmental and genetic risks is also important. Heavy exposure to chemicals, smoking, alcohol, poor diet, or engaging in any other teratogenic activities while pregnant can increase the risk of having a child born with a congenital amputation. Folic acid is a multivitamin that has been found to reduce birth defects.
Vaccinating the majority of the population is effective at preventing congenital rubella syndrome.