Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Causes of NDM
PNDM and TNDM are inherited genetically from the mother or father of the infant. Different genetic inheritance or genetic mutations can lead to different diagnosis of NDM (Permanent or Transient Neonatal Diabetes Mellitus). The following are different types of inheritance or mutations:
- "Autosomal Dominant": Every cell has two copies of each gene-one gen coming from the mother and one coming from the father. Autosomal dominant inheritance pattern is defined as a mutation that occurs in only one copy of the gene. A parent with the mutation can pass on a copy of the gene and a parent with the mutation can pass on a copy of their working gene (or a copy of their damaged gene). In an autosomal dominant inheritance, a child who has a parent with the mutation has a 50% possibility of inheriting the mutation.
- "Autosomal Recessive" -Autosomal recessive-Generally, every cells have two copies of each gene-one gene is inherited from the mother and one gene is inherited from the father. Autosomal recessive inheritance pattern is defined as a mutation present in both copies if the gene in order for a person to be affected and each parent much pass on a mutated gene for a child to be affected. However, if an infant or child has only one copy, he or she are a carrier of the mutation. If moth parents are carriers of the recessive gene mutation, each child have a 25% chance of inheriting the gene.
- "Spontaneous": A new mutation or change occurs within the gene.
- "X-linked:" When a trait or disease happens in a person who has inherited a mutated gene on the X chromosome (one of the sex chromosome).
Prevention: There are no current prevention methods, because TNDM or PNDM are inherited genetically.
The outcome for infants or adults with NDM have different outcomes among carriers of the disease. Among affected babies, some have PNDM while others have relapse of their diabetes and other patients may experience permanent remission. Diabetes may reoccur in the patient's childhood or adulthood. It was estimated that neonatal diabetes mellitus will be TNDM in about 50% are half of the cases.
During the Neonatal stage, the prognosis is determined by the severity of the disease (dehydration and acidosis), also based on how rapidly the disase is diagnosed and treated. Associated abnormalities (e.g. irregular growth in the womb or enlarged tongue) can effect a person's prognosis. The long-term prognosis depends on the person's metabolic control, which effects the presence and complications of diabetes complications. The prognosis can be confirmed with genetic analysis to find the genetic cause of the disease. WIth proper management, the prognosis for overall health and normal brain development is normally good. It is highly advised people living with NDM seek prognosis from their health care provider.
Breast feeding is good for the child even with a mother with diabetes mellitus. Some women wonder whether breast feeding is recommended after they have been diagnosed with diabetes mellitus. Breast feeding is recommended for most babies, including when mothers may be diabetic. In fact, the child’s risk for developing type 2 diabetes mellitus later in life may be lower if the baby was breast-fed. It also helps the child to maintain a healthy body weight during infancy. However, the breastmilk of mothers with diabetes has been demonstrated to have a different composition than that of non-diabetic mothers, containing elevated levels of glucose and insulin and decreased polyunsaturated fatty acids. Although benefits of breast-feeding for the children of diabetic mothers have been documented, ingestion of diabetic breast milk has also been linked to delayed language development on a dose-dependent basis.
High blood sugar levels are harmful to the mother and her fetus. Experts advise diabetics to maintain blood sugar level close to normal range for 2 to 3 months before planning for pregnancy. Managing blood sugar close to normal before and during pregnancy helps to protect the health of mother and the baby.
Insulin may be needed for type 2 diabetics instead of oral diabetes medication. Extra insulin may be needed for type 1 diabetics during pregnancy. Doctors may advise to check blood sugar more often to maintain near-normal blood sugar levels.
Since hyperinsulinemia and obesity are so closely linked it is hard to determine whether hyperinsulinemia causes obesity or obesity causes hyperinsulinemia, or both.
Obesity is characterized by an excess of adipose tissue – insulin increases the synthesis of fatty acids from glucose, facilitates the entry of glucose into adipocytes and inhibits breakdown of fat in adipocytes.
On the other hand, adipose tissue is known to secrete various metabolites, hormones and cytokines that may play a role in causing hyperinsulinemia. Specifically cytokines secreted by adipose tissue directly affect the insulin signalling cascade, and thus insulin secretion. Adiponectins are cytokines that are inversely related to percent body fat; that is people with a low body fat will have higher concentrations of adiponectins where as people with high body fat will have lower concentrations of adiponectins. Weyer "et al." (2011) reported that hyperinsulinemia is strongly associated with low adiponectin concentrations in obese people, though whether low adiponectin has a causal role in hyperinsulinemia remains to be established.
- May lead to hypoglycemia or diabetes
- Increased risk of PCOS
- Increased synthesis of VLDL (hypertriglyceridemia)
- Hypertension (insulin increases sodium retention by the renal tubules)
- Coronary Artery Disease (increased insulin damages endothelial cells)
- Increased risk of cardiovascular disease
- Weight gain and lethargy (possibly connected to an underactive thyroid)
The American College of Endocrinology (ACE) and the American Association of Clinical Endocrinologists (AACE) have developed "lifestyle intervention" guidelines for preventing the onset of type 2 diabetes:
- Healthy meals (a diet with no saturated and trans fats, sugars, and refined carbohydrates, as well as limited the intake of sodium and total calories)
- Physical exercise (30–45 minutes of cardio vascular exercise per day, five days a week)
- Reducing weight by as little as 5–10 percent may have a significant impact on overall health
Lifestyle factors are important to the development of type 2 diabetes, including obesity and being overweight (defined by a body mass index of greater than 25), lack of physical activity, poor diet, stress, and urbanization. Excess body fat is associated with 30% of cases in those of Chinese and Japanese descent, 60–80% of cases in those of European and African descent, and 100% of cases in Pima Indians and Pacific Islanders. Among those who are not obese, a high waist–hip ratio is often present. Smoking appears to increase the risk of type 2 diabetes mellitus.
Dietary factors also influence the risk of developing type 2 diabetes. Consumption of sugar-sweetened drinks in excess is associated with an increased risk. The type of fats in the diet are important, with saturated fats and trans fatty acids increasing the risk, and polyunsaturated and monounsaturated fat decreasing the risk. Eating a lot of white rice appears to play a role in increasing risk. A lack of exercise is believed to cause 7% of cases. Persistent organic pollutants may play a role.
The signs of diabetes mellitus are caused by a persistently high blood glucose concentration, which may be caused by either insufficient insulin, or by a lack of response to insulin. Most cats have a type of diabetes mellitus similar to human diabetes mellitus type 2, with β-cell dysfunction and insulin resistance. Factors which contribute to insulin resistance include obesity and endocrine diseases such as acromegaly. Acromegaly affects 20–30% of diabetic cats; it can be diagnosed by measuring the concentration of insulin-like growth factor-1 (IGF-1) in the blood.
Various strategies have been proposed to prevent the development of metabolic syndrome. These include increased physical activity (such as walking 30 minutes every day), and a healthy, reduced calorie diet. Many studies support the value of a healthy lifestyle as above. However, one study stated these potentially beneficial measures are effective in only a minority of people, primarily due to a lack of compliance with lifestyle and diet changes. The International Obesity Taskforce states that interventions on a sociopolitical level are required to reduce development of the metabolic syndrome in populations.
The Caerphilly Heart Disease Study followed 2,375 male subjects over 20 years and suggested the daily intake of a pint (~568 ml) of milk or equivalent dairy products more than halved the risk of metabolic syndrome. Some subsequent studies support the authors' findings, while others dispute them. A systematic review of four randomized controlled trials found that a paleolithic nutritional pattern improved three of five measurable components of the metabolic syndrome in participants with at least one of the components.
These are associated with insulin resistance and are risk factors for the development of type 2 diabetes mellitus. Those in this stratum (IGT or IFG) are at increased risk of cardiovascular disease. Of the two, impaired glucose tolerance better predicts cardiovascular disease and mortality.
In a way, prediabetes is a misnomer since it is an early stage of diabetes. It now is known that the health complications associated with type 2 diabetes often occur before the medical diagnosis of diabetes is made.
Possible causes include:
- Neoplasm
- Pancreatic cancer
- Polycystic ovary syndrome (PCOS)
- Trans fats
In some forms of MODY, standard treatment is appropriate, though exceptions occur:
- In MODY2, oral agents are relatively ineffective and insulin is unnecessary.
- In MODY1 and MODY3, insulin may be more effective than drugs to increase insulin sensitivity.
- Sulfonylureas are effective in the K channel forms of neonatal-onset diabetes. The mouse model of MODY diabetes suggested that the reduced clearance of sulfonylureas stands behind their therapeutic success in human MODY patients, but Urbanova et al. found that human MODY patients respond differently to the mouse model and that there was no consistent decrease in the clearance of sulfonylureas in randomly selected HNF1A-MODY and HNF4A-MODY patients.
It is estimated that between 6-50% of all persons, depending on population, diagnosed with type 2 diabetes might actually have LADA. This number accounts for an estimated 5–10% of the total diabetes population in the U.S. or, as many as 3.5 million persons with LADA. People with LADA typically have a normal BMI or may be underweight due to weight loss prior to diagnosis. Some people with LADA, however, may be overweight to mildly obese.
Contrary to popular belief, some people having LADA do carry a family history of type 2 diabetes.
Metabolic syndrome affects 60% of the U.S. population older than age 50. With respect to that demographic, the percentage of women having the syndrome is higher than that of men. The age dependency of the syndrome's prevalence is seen in most populations around the world.
The development of type 2 diabetes is caused by a combination of lifestyle and genetic factors. While some of these factors are under personal control, such as diet and obesity, other factors are not, such as increasing age, female gender, and genetics. A lack of sleep has been linked to type 2 diabetes. This is believed to act through its effect on metabolism. The nutritional status of a mother during fetal development may also play a role, with one proposed mechanism being that of altered DNA methylation. The intestinal bacteriæ Prevotella copri and Bacteroides vulgatus have been connected with type 2 diabetes.
The guidelines for preventing impaired fasting glucose are the same as those given for preventing type 2 diabetes in general. If these are adhered to, the progression to clinical diabetes can be slowed or halted. In some cases, a complete reversal of IFG can be achieved. Certain risk factors, such as being of Afro-Caribbean or South Asian ethnicity, as well as increasing age, are unavoidable, and such individuals may be advised to follow these guidelines, as well as monitor their blood glucose levels, more closely.
Remission occurs when a cat no longer requires treatment for diabetes mellitus, and has normal blood glucose concentrations for at least a month.
Approximately one in four cats with type 2-like diabetes achieve remission. Some studies have reported a higher remission rate than this, which may in part be due to intensive monitoring that is impractical outside of a research environment. Research studies have implicated a variety of factors in successful remission; in general, the following factors increase the likelihood of remission:
- Diabetes was diagnosed a few months ago
- The cat has no other serious disease
- Treatment includes insulin glargine administered twice daily
- The cat is monitored frequently during the first few months of treatment
- The cat eats a diet low in carbohydrates and high in protein.
Cats may present with type-2 (insulin-resistant) diabetes, at least at first, but hyperglycemia and amyloidosis, left untreated, will damage the pancreas over time and progress to insulin-dependent diabetes.
Glipizide and similar oral diabetic medicines designed for type-2 diabetic humans have been shown to increase amyloid production and amyloidosis, and therefore may reduce likelihood of remission.
Approximately one third of cats which achieve remission will later relapse.
Some sources make a distinction between two forms of monogenetic diabetes: MODY and neonatal diabetes. However, they have much in common and are often studied together.
Diabetic hypoglycemia can occur in any person with diabetes who takes any medicine to lower their blood glucose, but severe hypoglycemia occurs most often in people with type 1 diabetes who must take insulin for survival. In type 1 diabetes, iatrogenic hypoglycemia is more appropriately viewed as the result of the interplay of insulin excess and compromised glucose counterregulation rather than as absolute or relative insulin excess alone. Hypoglycemia can also be caused by sulfonylureas in people with type 2 diabetes, although it is far less common because glucose counterregulation generally remains intact in people with type 2 diabetes. Severe hypoglycemia rarely, if ever, occurs in people with diabetes treated only with diet, exercise, or insulin sensitizers.
For people with insulin-requiring diabetes, hypoglycemia is one of the recurrent hazards of treatment. It limits the achievability of normal glucoses with current treatment methods. Hypoglycemia is a true medical emergency, which requires prompt recognition and treatment to prevent organ and brain damage.
Type 1 diabetes is not currently preventable. Some researchers believe it might be prevented at the latent autoimmune stage, before it starts destroying beta cells.
Some research has suggested breastfeeding decreases the risk in later life and early introduction of gluten-containing cereals in the diet increases the risk of developing islet cell autoantibodies; various other nutritional risk factors are being studied, but no firm evidence has been found.
Giving children 2000 IU of vitamin D daily during their first year of life is associated with reduced risk of type 1 diabetes, though the causal relationship is obscure.
Children with antibodies to beta cell proteins (i.e. at early stages of an immune reaction to them) but no overt diabetes, and treated with niacinamide (vitamin B), had less than half the diabetes onset incidence in a seven-year time span than did the general population, and an even lower incidence relative to those with antibodies as above, but who received no niacinamide.
People with type 1 diabetes and undiagnosed celiac disease have worse glycaemic control and a higher prevalence of nephropathy and retinopathy. Gluten-free diet, when performed strictly, improves diabetes symptoms and appears to have a protective effect against developing long-term complications. Nevertheless, dietary management of both these diseases is challenging and these patients have poor compliance of the diet.
Chronic hyperglycemia that persists even in fasting states is most commonly caused by diabetes mellitus. In fact, chronic hyperglycemia is the defining characteristic of the disease. Intermittent hyperglycemia may be present in prediabetic states. Acute episodes of hyperglycemia without an obvious cause may indicate developing diabetes or a predisposition to the disorder.
In diabetes mellitus, hyperglycemia is usually caused by low insulin levels (Diabetes mellitus type 1) and/or by resistance to insulin at the cellular level (Diabetes mellitus type 2), depending on the type and state of the disease. Low insulin levels and/or insulin resistance prevent the body from converting glucose into glycogen (a starch-like source of energy stored mostly in the liver), which in turn makes it difficult or impossible to remove excess glucose from the blood. With normal glucose levels, the total amount of glucose in the blood at any given moment is only enough to provide energy to the body for 20–30 minutes, and so glucose levels must be precisely maintained by the body's internal control mechanisms. When the mechanisms fail in a way that allows glucose to rise to abnormal levels, hyperglycemia is the result.
Ketoacidosis may be the first symptom of immune-mediated diabetes, particularly in children and adolescents. Also, patients with immune-mediated diabetes, can change from modest fasting hyperglycemia to severe hyperglycemia and even ketoacidosis as a result of stress or an infection.
Certain medications increase the risk of hyperglycemia, including corticosteroids, octreotide, beta blockers, epinephrine, thiazide diuretics, niacin, pentamidine, protease inhibitors, L-asparaginase, and some antipsychotic agents. The acute administration of stimulants such as amphetamine typically produces hyperglycemia; chronic use, however, produces hypoglycemia. Some of the newer psychotropic medications, such as Zyprexa (Olanzapine) and Cymbalta (Duloxetine), can also cause significant hyperglycemia.
Thiazides are used to treat type 2 diabetes but it also causes severe hyperglycemia.
As impaired fasting glucose is considered a precursor condition for type 2 diabetes, it shares the same environmental and genetic risk factors.
Type 2 DM is characterized by insulin resistance, which may be combined with relatively reduced insulin secretion. The defective responsiveness of body tissues to insulin is believed to involve the insulin receptor. However, the specific defects are not known. Diabetes mellitus cases due to a known defect are classified separately. Type 2 DM is the most common type of diabetes mellitus.
In the early stage of type 2, the predominant abnormality is reduced insulin sensitivity. At this stage, high blood sugar can be reversed by a variety of measures and medications that improve insulin sensitivity or reduce the liver's glucose production.
Type 2 DM is primarily due to lifestyle factors and genetics. A number of lifestyle factors are known to be important to the development of type 2 DM, including obesity (defined by a body mass index of greater than 30), lack of physical activity, poor diet, stress, and urbanization. Excess body fat is associated with 30% of cases in those of Chinese and Japanese descent, 60–80% of cases in those of European and African descent, and 100% of Pima Indians and Pacific Islanders. Even those who are not obese often have a high waist–hip ratio.
Dietary factors also influence the risk of developing type 2 DM. Consumption of sugar-sweetened drinks in excess is associated with an increased risk. The type of fats in the diet is also important, with saturated fat and trans fats increasing the risk and polyunsaturated and monounsaturated fat decreasing the risk. Eating lots of white rice also may increase the risk of diabetes. A lack of physical activity is believed to cause 7% of cases.