Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
People who have had a concussion seem more susceptible to another one, particularly if the new injury occurs before symptoms from the previous concussion have completely gone away. It is also a negative process if smaller impacts cause the same symptom severity. Repeated concussions may increase a person's risk in later life for dementia, Parkinson's disease, and depression.
MTBI has a mortality rate of almost zero. The symptoms of most concussions resolve within weeks, but problems may persist. These are seldom permanent, and outcome is usually excellent. The overall prognosis for recovery may be influenced by a variety of factors that include age at the time of injury, intellectual abilities, family environment, social support system, occupational status, coping strategies, and financial circumstances. People over age 55 may take longer to heal from MTBI or may heal incompletely. Similarly, factors such as a previous head injury or a coexisting medical condition have been found to predict longer-lasting post-concussion symptoms. Other factors that may lengthen recovery time after MTBI include psychological problems such as substance abuse or clinical depression, poor health before the injury or additional injuries sustained during it, and life stress. Longer periods of amnesia or loss of consciousness immediately after the injury may indicate longer recovery times from residual symptoms. For unknown reasons, having had one concussion significantly increases a person's risk of having another. Having previously sustained a sports concussion has been found to be a strong factor increasing the likelihood of a concussion in the future. Other strong factors include participation in a contact sport and body mass size. The prognosis may differ between concussed adults and children; little research has been done on concussion in the pediatric population, but concern exists that severe concussions could interfere with brain development in children.
A 2009 study found that individuals with a history of concussions might demonstrate a decline in both physical and mental performance for longer than 30 years. Compared to their peers with no history of brain trauma, sufferers of concussion exhibited effects including loss of episodic memory and reduced muscle speed.
Cumulative effects of concussions are poorly understood, especially the effects on children. The severity of concussions and their symptoms may worsen with successive injuries, even if a subsequent injury occurs months or years after an initial one. Symptoms may be more severe and changes in neurophysiology can occur with the third and subsequent concussions. Studies have had conflicting findings on whether athletes have longer recovery times after repeat concussions and whether cumulative effects such as impairment in cognition and memory occur.
Cumulative effects may include psychiatric disorders and loss of long-term memory. For example, the risk of developing clinical depression has been found to be significantly greater for retired American football players with a history of three or more concussions than for those with no concussion history. Three or more concussions is also associated with a fivefold greater chance of developing Alzheimer's disease earlier and a threefold greater chance of developing memory deficits.
Many closed-head injuries can be prevented by proper use of safety equipment during dangerous activities. Common safety features that can reduce the likelihood of experiencing a brain injury include helmets, hard hats, car seats, and safety belts. Another safety precaution that can decrease a person's risk for brain injury is "not" to drink and drive or allow oneself to be driven by a person who has been drinking or who is otherwise impaired.
Helmets can be used to decrease closed-head injuries acquired during athletic activities, and are considered necessary for sports such as American "tackle" football, where frequent head impacts are a normal part of the game. However, recent studies have questioned the effectiveness of even American football helmets, where the assumed protection of helmets promotes far more head impacts, a behavior known as risk compensation. The net result seems to have been an increase, not decrease, in TBI. The similar sports of Australian-rules football and rugby are always played helmetless, and see far fewer traumatic brain injuries. (See Australian rules football injuries.)
Bicycle helmets are perhaps the most promoted variety of helmet, based on the assumption that cycling without a helmet is a dangerous activity, with a large risk of serious brain injury. However, available data clearly shows that to be false. Cycling (with approximately 700 American fatalities per year from all medical causes) is a very minor source of fatal traumatic brain injury, whose American total is approximately 52,000 per year. Similarly, bicycling causes only 3% of America's non-fatal TBI.
Still, bicycle-helmet promotion campaigns are common, and many U.S jurisdictions have enacted mandatory bicycle-helmet laws for children. A few such jurisdictions, a few Canadian provinces, plus Australia and New Zealand mandate bicycle helmets even for adults. A bicycle-helmet educational campaign directed toward children claimed an increase in helmet use from 5.5% to 40.2% leading to a claimed decrease in bicycle-related head injuries by nearly 67%. However, other sources have shown that bicycle-helmet promotion reduces cycling, often with no per-cyclist reduction in TBI.
Estimates of bicycle-helmet use by American adults vary. One study found that only 25-30% of American adults wear helmets while riding bicycles, despite decades of promotion and despite sport cyclists' adoption of helmets as part of their uniform. It would appear that the typical American adult correctly recognizes ordinary cycling as a very minor risk.
Following the commercial (as opposed to public-health) success of bicycle helmets, there have been successful attempts to promote the sale of ski helmets. Again, results have been less than impressive, with great increases in helmet use yielding no reduction in fatalities, and with most injury reduction confined to lacerations, contusions, and minor concussions, as opposed to more serious head injuries.
There have been rare campaigns for motoring helmets. Unfortunately, just as people greatly overestimate the TBI danger of bicycling, they greatly underestimate the risk of motoring, which remains the largest source of TBI in the developed world, despite the protective effects of seatbelts and airbags.
Head injuries in sports of any level (junior, amateur, professional) are the most dangerous and sickening kind of injuries that can occur in sport, and are becoming more common in Australian sport. Concussions are the most common side effect of a head injury and are defined as "temporary unconsciousness or confusion and other symptoms caused by a blow to the head." A concussion also falls under the category of Traumatic Brain Injury (TBI). Especially in contact sports like Australian rules football and Rugby issues with concussions are prevalent, and methods to deal with, prevent and treat concussions are continuously being updated and researched to deal with the issue. Concussions pose a serious threat to the patients’ mental and physical health, as well as their playing career, and can result in lasting brain damage especially if left untreated. The signs that a player may have a concussion are: loss of consciousness or non-responsiveness, balance problems (unsteadiness on feet, poor co-ordination), a dazed, blank or vacant look and/or confusion and unawareness of their surroundings. Of course the signs are relevant only after the player experiences a blow to the head.
Concussions in England's professional rugby union are the most common injury gained. Concussion can occur where an individual experiences a minor injury to the head. Commonly occurring in high contact sporting activities; American football, boxing, and rugby. It can also occur in recreational activities like horse riding, jumping, cycling, and skiing. The reason being that it doesn't have to be something to strike you in the proximity of your brain, but can also be caused by rapid change of movement, giving the skull not enough time to move with your body, causing your brain to press against your skull. With rugby being such a contact and fast moving sport, it is no wonder why there is concussion and other head injuries occurring. With the development of equipment and training methods, these will help benefit the players on the field know what could happen and how they can help with preventing it.
Concussions, a type of traumatic brain injury, are a frequent concern for those playing sports, from children and teenagers to professional athletes. Repeated concussions are a known cause of various neurological disorders, most notably chronic traumatic encephalopathy (CTE), which in professional athletes has led to premature retirement, erratic behavior and even suicide. Because concussions cannot be seen on X-rays or CT scans, attempts to prevent concussions have been difficult.
A concussion is defined as a complex pathophysiological process affecting the brain, induced by traumatic forces. Concussion may be caused either by a direct blow to the head, face, neck or elsewhere on the body with an "impulsive" force transmitted to the head. Also, you don't have to pass out when you get a concussion (Aubry et al., 2001).
The dangers of repeated concussions have long been known for boxers and wrestlers; a form of CTE common in these two sports, dementia pugilistica (DP), was first described in 1928. An awareness of the risks of concussions in other sports began to grow in the 1990s, and especially in the mid-2000s, in both the medical and the professional sports communities, as a result of studies of the brains of prematurely deceased American football players, who showed extremely high incidences of CTE (see concussions in American football).
As of 2012, the four major professional sports leagues in the United States and Canada have concussion policies. Sports-related concussions are generally analyzed by athletic training or medical staff on the sidelines using an evaluation tool for cognitive function known as the Sport Concussion Assessment Tool (SCAT), a symptom severity checklist, and a balance test.
Concussion symptoms can last for an undetermined amount of time depending on the player and the severity of the concussion. A concussion will affect the way a person's brain works.
There is the potential of post-concussion syndrome, post-concussion syndrome is defined as a set of symptoms that may continue after a concussion is sustained. Post-concussion symptoms can be classified into physical, cognitive, emotional, and sleep symptoms. Physical symptoms include a headache, nausea, and vomiting. Athletes may experience cognitive symptoms that include speaking slowly, difficulty remembering and concentrating. Emotional and sleep symptoms include irritability, sadness, drowsiness, and trouble falling asleep.
Along with the classification of post-concussion symptoms, the symptoms can also be described as immediate and delayed. The immediate symptoms are experienced immediately after a concussion such as: memory loss, disorientation, and poor balance. Delayed symptoms are experienced in the later stages and include sleeping disorders and behavioral changes. Both immediate and delayed symptoms can continue for long periods of time and have a negative impact on recovery. According to research, 20-25% of individuals who have sustained a concussion experienced chronic, delayed symptoms.
Playing through concussion makes people more vulnerable to getting hit again, and that is why most sports have test that trainers will perform to prevent getting hit a second time. A second blow can cause a rare condition known as second-impact syndrome, which can result in severe injury or death. Second-impact syndrome is when an athlete suffers a second head injury before the brain has adequate time to heal in between concussions.
Repeated concussions have been linked to a variety of neurological disorders among athletes, including CTE, Alzheimer's Disease, Parkinsonism and Amyotrophic lateral sclerosis (ALS).
Closed-head injuries are caused primarily by vehicular accidents, falls, acts of violence, and sports injuries. Falls account for 35.2% of brain injuries in the United States, with rates highest for children ages 0–4 years and adults ages 75 years and older. Head injuries are more common in men than women across every age group. Boys aged 0–4 years have the highest rates of brain injury related hospital visits, hospitalizations, and deaths combined. Multiple mild traumatic brain injuries sustained over a short period of time (hours to weeks), often seen with sports-related injuries, can result in major neurological or cognitive deficits or fatality.
Blast-related traumatic brain injuries are often closed-head injuries and result from rapid changes in atmospheric pressure, objects dislodged by the blast hitting people, or people being thrown into motion by the blast Blast-related injuries have shown a recent increase in occurrence with the return of veterans from Iraq such that traumatic brain injury has been coined the "signature injury" of Operation Iraqi Freedom
Closed-head injuries can range from mild injuries to debilitating traumatic brain injuries and can lead to severe brain damage or death. Common closed-head injuries include:
- concussion – a head injury resulting in temporary dysfunction of normal brain function. Almost half of the total concussions reported each year are sports-related
- intracranial hematoma – a condition in which a blood vessel ruptures causing a pool of blood to form around the brain (subdural hematoma) or between the brain and the skull (epidural hematoma). Intracranial hematoma causes an increase in pressure on the brain and requires immediate medical attention.
- cerebral contusion – a bruise to the brain tissue as a result of trauma. Contusions are local in nature, separating them from concussions.
- diffuse axonal injury – These injuries are frequently seen in car accidents and cause permanent damage to the brain. Severe diffuse axonal injuries often lead to comas or vegetative states.
The occurrence of concussion in children during sport is significantly more likely compared to other levels of athletes. Roughly 20% of children playing sport are diagnosed with concussion. Despite the lower level of impact compared to the professional or amateur levels, children's neck muscles are quite weak and most lack the awareness and skill level to cushion or prepare themselves for a blow leading to a high concussion rate. The guidelines and protocols for a child suffering a concussion are basically the same as if an adult received one.
For a child diagnosed with a concussion, the real issue is returning to school rather than the sporting field, as a concussion can affect a child's learning ability. A medical clearance is required before a return to school is possible and parents are recommended to properly manage their child through the first 72 hours after experiencing a concussion.
Once taken off the field of play due to possible concussion, being unconscious, or showing the symptoms post game, getting medical advice as soon as possible is recommended. At the hospital or medical practice, the player will be under observation, if they are experiencing a headache, mild pain killers will be given. The medical professional will request that no food or drink is to be consumed until advised. They will then assess whether the player needs an x-ray, to check for any possible cervical vertebrae damage, or a computerised axial tomography (CT Scan) to check for any brain or cranium damage. With a mild head injury being sent home to take care and doing activities slower than usual, and maintaining painkillers. If symptoms of concussion don't disappear in the average of seven to ten days, then seek medical advice again as injury could be worse. In post-concussion syndrome, symptoms do not resolve for weeks, months, or years after a concussion, and may occasionally be permanent. About 10% to 20% of people have post concussion syndrome for more than a month.
Concussions and other types of repetitive play-related head blows in American football have been shown to be the cause of chronic traumatic encephalopathy (CTE), which has led to player suicides and other debilitating symptoms after retirement, including memory loss, depression, anxiety, headaches, and also sleep disturbances.
The list of ex-NFL players that have either been diagnosed "post-mortem" with CTE or have reported symptoms of CTE continues to grow.
Concussions are proven to cause loss of brain function. This can lead to physical and emotional symptoms such as attention disorders, depression, headaches, nausea, and amnesia. These symptoms can last for days or week and even after the symptoms have gone, the brain still won't be completely normal. Players with multiple concussions can have drastically worsened symptoms and exponentially increased recovery time.
Researchers at UCLA have, for the first time, used a brain-imaging tool to identify a certain protein found in five retired NFL players. The presence and accumulation of tau proteins found in the five living players, are associated with Alzheimer's disease. Previously, this type of exam could only be performed with an autopsy. Scientists at UCLA created a chemical marker that binds to the abnormal proteins and they are able to view this with Positron Emission Tomography (PET) scan. Researcher at UCLA, Gary Small explains, "Providing a non-invasive method for early detection is a critical first step in developing interventions to prevent symptom onset and progression in CTE".
In the US, the annual incidence of stress fractures in athletes and military recruits ranges from 5% to 30%, depending on the sport and other risk factors. Women and highly active individuals are also at a higher risk. The incidence probably also increases with age due to age-related reductions in bone mass density (BMD). Children may also be at risk because their bones have yet to reach full density and strength. The female athlete triad also can put women at risk as disordered eating and osteoporosis can cause the bones to be severely weakened.
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease found in people who have had multiple head injuries. Symptoms may include behavioral problems, mood problems, and problems with thinking. This typically does not begin until years after the injuries. It often gets worse over time and can result in dementia. It is unclear if the risk of suicide is altered.
Most documented cases have occurred in athletes involved in contact sports such as football, wrestling, ice hockey, and soccer. Other risk factors include being in the military, prior domestic violence, and repeated banging of the head. The exact amount of trauma required for the condition to occur is unknown. Definitive diagnosis can only occur at autopsy. It is a form of tauopathy.
As of 2017 there is no specific treatment. Rates of disease have been found to be about 30% among those with a history of multiple head injuries. Population rates, however, are unclear. Research into brain damage as a result of repeated head injuries began in the 1920s, at which time the condition was known as "punch drunk". Changing the rules in some sports has been discussed as a means of prevention.
"Any finger injury that is sustained by a young adolescent (12–16) should be seen by a physician and have x-rays performed. These skeletally immature athletes are very susceptible to developing debilitating joint arthritis later in adulthood."
In terms of overuse injuries a British study found that:
- 40 percent occurred in the fingers
- 16 percent in the shoulders
- 12 percent in the elbows
- 5 percent were the knees
- 5 percent back
- 4 percent wrists
One injury that tend to be very common among climbers is Carpal tunnel syndrome. It is found in about 25% of climbers.
Women in sports such as association football, basketball, and tennis are significantly more prone to ACL injuries than men. The discrepancy has been attributed to gender differences in anatomy, general muscular strength, reaction time of muscle contraction and coordination, and training techniques.
Gender differences in ACL injury rates become evident when specific sports are compared. A review of NCAA data has found relative rates of injury per 1000 athlete exposures as follows:
- Men's basketball 0.07, women's basketball 0.23
- Men's lacrosse 0.12, women's lacrosse 0.17
- Men's football 0.09, women's football 0.28
The highest rate of ACL injury in women occurred in gymnastics, with a rate of injury per 1000 athlete exposures of 0.33
Of the four sports with the highest ACL injury rates, three were women's – gymnastics, basketball and soccer.
According to recent studies, female athletes are two to eight times more likely to strain their anterior cruciate ligament (ACL) in sports that involve cutting and jumping as compared to men who play the same particular sports (soccer, basketball, and volleyball). Differences between males and females identified as potential causes are the active muscular protection of the knee joint, the greater Q angle putting more medial torque on the knee joint, relative ligament laxity caused by differences in hormonal activity from estrogen and relaxin, intercondylar notch dimensions, and muscular strength.
Anterior tibial stress fractures can have a particularly poor prognosis and can require surgery. On radiographic imaging these stress fractures are referred to as the "dreaded black line." When compared to other stress fractures, anterior tibial fractures are more likely to progress to complete fracture of the tibia and displacement. Superior femoral neck stress fractures, if left untreated, can progress to become complete fractures with avascular necrosis, and should also be managed surgically. Proximal metadiaphyseal fractures of the fifth metatarsal (middle of the outside edge of the foot) are also notorious for poor bone healing. These stress fractures heal slowly with significant risk of refracture.
Though articular cartilage damage is not life-threatening, it does strongly affect the quality of life. Articular cartilage damage is often the cause of severe pain, swellings, strong barriers to mobility and severe restrictions to the patient's activities. Over the last decades, however, surgeons and biotech ventures have elaborated promising procedures that contribute to articular cartilage repair.
High school athletes are at increased risk for ACL tears when compared to non-athletes. This risk increases with certain types of sports. Among high school girls, the sport with the highest risk of ACL tear is soccer, followed by basketball and lacrosse. The highest risk sport for boys was basketball, followed by lacrosse and soccer. Children and young athletes may benefit from early surgical reconstruction after ACL injury. Young athletes who have early surgical reconstruction of their torn ACL are more likely to return to their previous level of athletic ability when compared to those who underwent delayed surgery or nonoperative treatment. They are also less likely to experience instability in their knee if they undergo early surgery.
Symptoms of CTE, which occur in four stages, generally appear 8 to 10 years after an athlete experiences repetitive mild traumatic brain injury.
First-stage symptoms include attention deficit hyperactivity disorder as well as confusion, disorientation, dizziness, and headaches. Second-stage symptoms include memory loss, social instability, impulsive behavior, and poor judgment. Third and fourth stages include progressive dementia, movement disorders, hypomimia, speech impediments, sensory processing disorder, tremors, vertigo, deafness, depression and suicidality.
Additional symptoms include dysarthria, dysphagia, cognitive disorder such as amnesia, and ocular abnormalities, such as ptosis.
The condition manifests as dementia, or declining mental ability, problems with memory, dizzy spells or lack of balance to the point of not being able to walk under one's own power for a short time and/or Parkinsonism, or tremors and lack of coordination. It can also cause speech problems and an unsteady gait. Patients with DP may be prone to inappropriate or explosive behavior and may display pathological jealousy or paranoia.
Cartilage structures and functions can relatively easily be harmed, often resulting in damage. Such damage can result from a variety of causes, resulting from a bad fall or sport-accident (traumatic), previous knee injuries (post-traumatic) or wear and tear over time. Immobilization for long periods can also result in cartilage damage.
Articular cartilage damage might be found on its own but it will more often be found in conjunction with injuries to ligaments and menisci. People with previous repairs to ligaments and or menisci often face greater chances of new articular cartilage damage due to altered mechanics in the joint.
Sports involving repetitive or forceful hyperextension of the spine, especially when combined with rotation are the main mechanism of injury for spondylolysis. The stress fracture of the pars interarticularis occurs on the side opposite to activity. For instance, for a right-handed player, the fracture occurs on the left side of the vertebrae.
Spondylolysis has a higher occurrence in the following activities:
- Baseball
- Tennis
- Diving
- Cheerleading
- Gymnastics
- Football
- Soccer
- Wrestling
- Weightlifting
- Roller Derby
- Cricket
- Pole Vault
- Rugby
- Volleyball
- Gym
- Ultimate Frisbee (especially during impact from laying out)
Although this condition can be caused by repetitive trauma to the lumbar spine in strenuous sports, other risk factors can also predispose individuals to spondylolsis. Males are more commonly affected by spondylolysis than females. In one study looking at youth athletes, it was found that the mean age of individuals with spondylolisthesis was 20 years of age. Spondylolysis also runs in families suggesting a hereditary component such as a predisposition to weaker vertebrae.
Management of tendon injuries in the fingers is to follow the RICE method.
- Immediately cease climbing and any other activity that puts stress on the injured finger. Consult a doctor if there is noticeable "bowstringing" on the flexor tendon or if you are the least unsure about the nature of the injury.
- There are different theories out there for the preferred line of approach. Some argue for the use of NSAIDs and ice for visible swelling only, others argue diclofenac sodium should be applied and carefully rubbed in on the injury until the swelling starts to give.
- When the pain and swelling is gone (depending of the grade of the injury, 1–4 weeks), begin with an active healing process – containing squeezing putty clay or a stress ball. Combine this with light massage and mild stretching to ensure your finger will heal properly and better prepared for future stress. The use of heating pads and cold water baths are also mentioned in several sources in order to increase blood flow. Use this therapy for about twice as long as the previous resting period (2–8 weeks) before gradually returning, with the utmost care, to climbing.
- Gradually return to climbing while using prophylactic taping every time you climb, and spend the first weeks climbing relatively easy routes with big holds, good footholds and keep your sessions short and stay away from overhangs and campus areas/boards.
- Return to full-force climbing if easy climbing yields no pain. Continue taping (it will also serve as a mental note of the previous injury) and avoid tweaky crimps and pockets for several months, since complete tendon healing can take 100 days or more.
The cause of spondylolysis remains unknown, however many factors are thought to contribute to its development. The condition is present in up to 6% of the population, majority of which usually present asymptomatically. Research supports that there are hereditary and acquired risk factors that can make one more susceptible to the defect. The disorder is generally more prevalent in males compared to females, and tends to occur earlier in males due to their involvement in more strenuous activities at a younger age. In a young athlete, the spine is still growing which means there are many ossification centers, leaving points of weakness in the spine. This leaves young athletes at increased risk, particularly when involved in repetitive hyperextension and rotation across the lumbar spine. Spondylolysis is a common cause of low back pain in preadolescents and adolescent athletes, as it accounts for about 50% of all low back pain. It is believed that both repetitive trauma and an inherent genetic weakness can make an individual more susceptible to spondylolysis.