Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
A 1988 study over 41 months found that improved glucose control led to initial "worsening of complications" but was not followed by the expected improvement in complications. In 1993 it was discovered that the serum of diabetics with neuropathy is toxic to nerves, even if its blood sugar content is normal.
Research from 1995 also challenged the theory of hyperglycemia as the cause of diabetic complications. The fact that 40% of diabetics who carefully controlled their blood sugar nevertheless developed neuropathy made clear other factors were involved.
In a 2013 meta-analysis of 6 randomized controlled trials involving 27,654 patients, tight blood glucose control reduced the risk for some macrovascular and microvascular events but without effect on all-cause mortality and cardiovascular mortality.
Research from 2007 suggested that in type 1 diabetics, the continuing autoimmune disease which initially destroyed the beta cells of the pancreas may also cause retinopathy, neuropathy, and nephropathy.
In 2008 it was even suggested to treat retinopathy with drugs to suppress the abnormal immune response rather than by blood sugar control.
Lifestyle factors are important to the development of type 2 diabetes, including obesity and being overweight (defined by a body mass index of greater than 25), lack of physical activity, poor diet, stress, and urbanization. Excess body fat is associated with 30% of cases in those of Chinese and Japanese descent, 60–80% of cases in those of European and African descent, and 100% of cases in Pima Indians and Pacific Islanders. Among those who are not obese, a high waist–hip ratio is often present. Smoking appears to increase the risk of type 2 diabetes mellitus.
Dietary factors also influence the risk of developing type 2 diabetes. Consumption of sugar-sweetened drinks in excess is associated with an increased risk. The type of fats in the diet are important, with saturated fats and trans fatty acids increasing the risk, and polyunsaturated and monounsaturated fat decreasing the risk. Eating a lot of white rice appears to play a role in increasing risk. A lack of exercise is believed to cause 7% of cases. Persistent organic pollutants may play a role.
The American College of Endocrinology (ACE) and the American Association of Clinical Endocrinologists (AACE) have developed "lifestyle intervention" guidelines for preventing the onset of type 2 diabetes:
- Healthy meals (a diet with no saturated and trans fats, sugars, and refined carbohydrates, as well as limited the intake of sodium and total calories)
- Physical exercise (30–45 minutes of cardio vascular exercise per day, five days a week)
- Reducing weight by as little as 5–10 percent may have a significant impact on overall health
The progression to type 2 diabetes mellitus is not inevitable for those with prediabetes. The progression into diabetes mellitus from prediabetes is approximately 25% over three to five years.
Gestational diabetes affects 3–10% of pregnancies, depending on the population studied.
Breast feeding is good for the child even with a mother with diabetes mellitus. Some women wonder whether breast feeding is recommended after they have been diagnosed with diabetes mellitus. Breast feeding is recommended for most babies, including when mothers may be diabetic. In fact, the child’s risk for developing type 2 diabetes mellitus later in life may be lower if the baby was breast-fed. It also helps the child to maintain a healthy body weight during infancy. However, the breastmilk of mothers with diabetes has been demonstrated to have a different composition than that of non-diabetic mothers, containing elevated levels of glucose and insulin and decreased polyunsaturated fatty acids. Although benefits of breast-feeding for the children of diabetic mothers have been documented, ingestion of diabetic breast milk has also been linked to delayed language development on a dose-dependent basis.
No major organization recommends universal screening for diabetes as there is no evidence that such a program improve outcomes. Screening is recommended by the United States Preventive Services Task Force (USPSTF) in adults without symptoms whose blood pressure is greater than 135/80 mmHg. For those whose blood pressure is less, the evidence is insufficient to recommend for or against screening. There is no evidence that it changes the risk of death in this group of people. They also recommend screening among those who are overweight and between the ages of 40 and 70.
The World Health Organization recommends testing those groups at high risk and in 2014 the USPSTF is considering a similar recommendation. High-risk groups in the United States include: those over 45 years old; those with a first degree relative with diabetes; some ethnic groups, including Hispanics, African-Americans, and Native-Americans; a history of gestational diabetes; polycystic ovary syndrome; excess weight; and conditions associated with metabolic syndrome. The American Diabetes Association recommends screening those who have a BMI over 25 (in people of Asian descent screening is recommended for a BMI over 23).
Remission occurs when a cat no longer requires treatment for diabetes mellitus, and has normal blood glucose concentrations for at least a month.
Approximately one in four cats with type 2-like diabetes achieve remission. Some studies have reported a higher remission rate than this, which may in part be due to intensive monitoring that is impractical outside of a research environment. Research studies have implicated a variety of factors in successful remission; in general, the following factors increase the likelihood of remission:
- Diabetes was diagnosed a few months ago
- The cat has no other serious disease
- Treatment includes insulin glargine administered twice daily
- The cat is monitored frequently during the first few months of treatment
- The cat eats a diet low in carbohydrates and high in protein.
Cats may present with type-2 (insulin-resistant) diabetes, at least at first, but hyperglycemia and amyloidosis, left untreated, will damage the pancreas over time and progress to insulin-dependent diabetes.
Glipizide and similar oral diabetic medicines designed for type-2 diabetic humans have been shown to increase amyloid production and amyloidosis, and therefore may reduce likelihood of remission.
Approximately one third of cats which achieve remission will later relapse.
Diabetes mellitus is rare in cats younger than five years old. Burmese cats in Europe and Australia have increased risk of developing diabetes mellitus; American Burmese cats do not have this increased risk due to genetic diffences between American Burmese and Burmese in other parts of the world.
Classical risk factors for developing gestational diabetes are:
- Polycystic Ovary Syndrome
- A previous diagnosis of gestational diabetes or prediabetes, impaired glucose tolerance, or impaired fasting glycaemia
- A family history revealing a first-degree relative with type 2 diabetes
- Maternal age – a woman's risk factor increases as she gets older (especially for women over 35 years of age).
- Ethnicity (those with higher risk factors include African-Americans, Afro-Caribbeans, Native Americans, Hispanics, Pacific Islanders, and people originating from South Asia)
- Being overweight, obese or severely obese increases the risk by a factor 2.1, 3.6 and 8.6, respectively.
- A previous pregnancy which resulted in a child with a macrosomia (high birth weight: >90th centile or >4000 g (8 lbs 12.8 oz))
- Previous poor obstetric history
- Other genetic risk factors: There are at least 10 genes where certain polymorphism are associated with an increased risk of gestational diabetes, most notably TCF7L2.
In addition to this, statistics show a double risk of GDM in smokers. Polycystic ovarian syndrome is also a risk factor, although relevant evidence remains controversial. Some studies have looked at more controversial potential risk factors, such as short stature.
About 40–60% of women with GDM have no demonstrable risk factor; for this reason many advocate to screen all women. Typically, women with GDM exhibit no symptoms (another reason for universal screening), but some women may demonstrate increased thirst, increased urination, fatigue, nausea and vomiting, bladder infection, yeast infections and blurred vision.
At present, there is no international standard classification of diabetes in dogs. Commonly used terms are:
- Insulin deficiency diabetes or primary diabetes, which refers to the destruction of the beta cells of the pancreas and their inability to produce insulin.
- Insulin resistance diabetes or secondary diabetes, which describes the resistance to insulin caused by other medical conditions or by hormonal drugs.
While the occurrence of beta cell destruction is known, all of the processes behind it are not. Canine primary diabetes mirrors Type 1 human diabetes in the inability to produce insulin and the need for exogenous replacement of it, but the target of canine diabetes autoantibodies has yet to be identified. Breed and treatment studies have been able to provide some evidence of a genetic connection. Studies have furnished evidence that canine diabetes has a seasonal connection not unlike its human Type 1 diabetes counterpart, and a "lifestyle" factor, with pancreatitis being a clear cause. This evidence suggests that the disease in dogs has some environmental and dietary factors involved.
Secondary diabetes may be caused by use of steroid medications, the hormones of estrus, acromegaly, (spaying can resolve the diabetes), pregnancy, or other medical conditions such as Cushing's disease. In such cases, it may be possible to treat the primary medical problem and revert the animal to non-diabetic status. Returning to non-diabetic status depends on the amount of damage the pancreatic insulin-producing beta cells have sustained.
It happens rarely, but it is possible for a pancreatitis attack to activate the endocrine portion of the organ back into being capable of producing insulin once again in dogs. It is possible for acute pancreatitis to cause a temporary, or transient diabetes, most likely due to damage to the endocrine portion's beta cells. Insulin resistance that can follow a pancreatitis attack may last for some time thereafter. Pancreatitis can damage the endocrine pancreas to the point where the diabetes is permanent.
People with diabetes show an increased rate of urinary tract infection. The reason is bladder dysfunction that is more common in diabetics than in non-diabetics due to diabetic nephropathy. When present, nephropathy can cause a decrease in bladder sensation, which in turn, can cause increased residual urine, a risk factor for urinary tract infections.
Complications of poorly managed type 1 diabetes mellitus may include cardiovascular disease, diabetic neuropathy, and diabetic retinopathy, among others. However, cardiovascular disease as well as neuropathy may have an autoimmune basis, as well. Women with type 1 DM have a 40% higher risk of death as compared to men with type 1 DM. The life expectancy of an individual with type 1 diabetes is 11 years less for men and 13 years less for women.
In February 2013 scientists successfully cured type 1 diabetes in dogs using a pioneering gene therapy.
Type 2 DM is characterized by insulin resistance, which may be combined with relatively reduced insulin secretion. The defective responsiveness of body tissues to insulin is believed to involve the insulin receptor. However, the specific defects are not known. Diabetes mellitus cases due to a known defect are classified separately. Type 2 DM is the most common type of diabetes mellitus.
In the early stage of type 2, the predominant abnormality is reduced insulin sensitivity. At this stage, high blood sugar can be reversed by a variety of measures and medications that improve insulin sensitivity or reduce the liver's glucose production.
Type 2 DM is primarily due to lifestyle factors and genetics. A number of lifestyle factors are known to be important to the development of type 2 DM, including obesity (defined by a body mass index of greater than 30), lack of physical activity, poor diet, stress, and urbanization. Excess body fat is associated with 30% of cases in those of Chinese and Japanese descent, 60–80% of cases in those of European and African descent, and 100% of Pima Indians and Pacific Islanders. Even those who are not obese often have a high waist–hip ratio.
Dietary factors also influence the risk of developing type 2 DM. Consumption of sugar-sweetened drinks in excess is associated with an increased risk. The type of fats in the diet is also important, with saturated fat and trans fats increasing the risk and polyunsaturated and monounsaturated fat decreasing the risk. Eating lots of white rice also may increase the risk of diabetes. A lack of physical activity is believed to cause 7% of cases.
High blood sugar levels are harmful to the mother and her fetus. Experts advise diabetics to maintain blood sugar level close to normal range for 2 to 3 months before planning for pregnancy. Managing blood sugar close to normal before and during pregnancy helps to protect the health of mother and the baby.
Insulin may be needed for type 2 diabetics instead of oral diabetes medication. Extra insulin may be needed for type 1 diabetics during pregnancy. Doctors may advise to check blood sugar more often to maintain near-normal blood sugar levels.
There is no known preventive measure for type 1 diabetes. Type 2 diabeteswhich accounts for 85–90% of all casescan often be prevented or delayed by maintaining a normal body weight, engaging in physical activity, and consuming a healthy diet. Higher levels of physical activity (more than 90 minutes per day) reduce the risk of diabetes by 28%. Dietary changes known to be effective in helping to prevent diabetes include maintaining a diet rich in whole grains and fiber, and choosing good fats, such as the polyunsaturated fats found in nuts, vegetable oils, and fish. Limiting sugary beverages and eating less red meat and other sources of saturated fat can also help prevent diabetes. Tobacco smoking is also associated with an increased risk of diabetes and its complications, so smoking cessation can be an important preventive measure as well.
The relationship between type 2 diabetes and the main modifiable risk factors (excess weight, unhealthy diet, physical inactivity and tobacco use) is similar in all regions of the world. There is growing evidence that the underlying determinants of diabetes are a reflection of the major forces driving social, economic and cultural change: globalization, urbanization, population aging, and the general health policy environment.
It is estimated that between 6-50% of all persons, depending on population, diagnosed with type 2 diabetes might actually have LADA. This number accounts for an estimated 5–10% of the total diabetes population in the U.S. or, as many as 3.5 million persons with LADA. People with LADA typically have a normal BMI or may be underweight due to weight loss prior to diagnosis. Some people with LADA, however, may be overweight to mildly obese.
Contrary to popular belief, some people having LADA do carry a family history of type 2 diabetes.
Diabetic hypoglycemia can occur in any person with diabetes who takes any medicine to lower their blood glucose, but severe hypoglycemia occurs most often in people with type 1 diabetes who must take insulin for survival. In type 1 diabetes, iatrogenic hypoglycemia is more appropriately viewed as the result of the interplay of insulin excess and compromised glucose counterregulation rather than as absolute or relative insulin excess alone. Hypoglycemia can also be caused by sulfonylureas in people with type 2 diabetes, although it is far less common because glucose counterregulation generally remains intact in people with type 2 diabetes. Severe hypoglycemia rarely, if ever, occurs in people with diabetes treated only with diet, exercise, or insulin sensitizers.
For people with insulin-requiring diabetes, hypoglycemia is one of the recurrent hazards of treatment. It limits the achievability of normal glucoses with current treatment methods. Hypoglycemia is a true medical emergency, which requires prompt recognition and treatment to prevent organ and brain damage.
The guidelines for preventing impaired fasting glucose are the same as those given for preventing type 2 diabetes in general. If these are adhered to, the progression to clinical diabetes can be slowed or halted. In some cases, a complete reversal of IFG can be achieved. Certain risk factors, such as being of Afro-Caribbean or South Asian ethnicity, as well as increasing age, are unavoidable, and such individuals may be advised to follow these guidelines, as well as monitor their blood glucose levels, more closely.
Since hyperinsulinemia and obesity are so closely linked it is hard to determine whether hyperinsulinemia causes obesity or obesity causes hyperinsulinemia, or both.
Obesity is characterized by an excess of adipose tissue – insulin increases the synthesis of fatty acids from glucose, facilitates the entry of glucose into adipocytes and inhibits breakdown of fat in adipocytes.
On the other hand, adipose tissue is known to secrete various metabolites, hormones and cytokines that may play a role in causing hyperinsulinemia. Specifically cytokines secreted by adipose tissue directly affect the insulin signalling cascade, and thus insulin secretion. Adiponectins are cytokines that are inversely related to percent body fat; that is people with a low body fat will have higher concentrations of adiponectins where as people with high body fat will have lower concentrations of adiponectins. Weyer "et al." (2011) reported that hyperinsulinemia is strongly associated with low adiponectin concentrations in obese people, though whether low adiponectin has a causal role in hyperinsulinemia remains to be established.
- May lead to hypoglycemia or diabetes
- Increased risk of PCOS
- Increased synthesis of VLDL (hypertriglyceridemia)
- Hypertension (insulin increases sodium retention by the renal tubules)
- Coronary Artery Disease (increased insulin damages endothelial cells)
- Increased risk of cardiovascular disease
- Weight gain and lethargy (possibly connected to an underactive thyroid)
Chronic hyperglycemia that persists even in fasting states is most commonly caused by diabetes mellitus. In fact, chronic hyperglycemia is the defining characteristic of the disease. Intermittent hyperglycemia may be present in prediabetic states. Acute episodes of hyperglycemia without an obvious cause may indicate developing diabetes or a predisposition to the disorder.
In diabetes mellitus, hyperglycemia is usually caused by low insulin levels (Diabetes mellitus type 1) and/or by resistance to insulin at the cellular level (Diabetes mellitus type 2), depending on the type and state of the disease. Low insulin levels and/or insulin resistance prevent the body from converting glucose into glycogen (a starch-like source of energy stored mostly in the liver), which in turn makes it difficult or impossible to remove excess glucose from the blood. With normal glucose levels, the total amount of glucose in the blood at any given moment is only enough to provide energy to the body for 20–30 minutes, and so glucose levels must be precisely maintained by the body's internal control mechanisms. When the mechanisms fail in a way that allows glucose to rise to abnormal levels, hyperglycemia is the result.
Ketoacidosis may be the first symptom of immune-mediated diabetes, particularly in children and adolescents. Also, patients with immune-mediated diabetes, can change from modest fasting hyperglycemia to severe hyperglycemia and even ketoacidosis as a result of stress or an infection.
The main risk factor is a history of diabetes mellitus type 2. Occasionally it may occur in those without a prior history of diabetes or those with diabetes mellitus type 1. Triggers include infections, stroke, trauma, certain medications, and heart attacks.
Other risk factors:
- Lack of sufficient insulin (but enough to prevent ketosis)
- Poor kidney function
- Poor fluid intake (dehydration)
- Older age (50–70 years)
- Certain medical conditions (cerebral vascular injury, myocardial infarction, sepsis)
- Some medications (glucocorticoids, beta-blockers, thiazide diuretics, calcium channel blockers, phenytoin)
The risk of progression to diabetes and development of cardiovascular disease is greater than for impaired fasting glucose.
Although some drugs can delay the onset of diabetes, lifestyle modifications play a greater role in the prevention of diabetes. Patients identified as having an IGT may be able to prevent diabetes through a combination of increased exercise and reduction of body weight. "Drug therapy can be considered when aggressive lifestyle interventions are unsuccessful."