Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Sleep apnea can affect people regardless of sex, race, or age. However, risk factors include:
- being male
- excessive weight
- an age above 40
- large neck size (greater than 16–17 inches)
- enlarged tonsils or tongue
- small jaw bone
- gastroesophageal reflux
- allergies
- sinus problems
- a family history of sleep apnea
- deviated septum
Alcohol, sedatives and tranquilizers may also promote sleep apnea by relaxing throat muscles. Smokers have sleep apnea at three times the rate of people who have never smoked.
Central sleep apnea is more often associated with any of the following risk factors:
- being male
- an age above 65
- having heart disorders such as atrial fibrillation or atrial septal defects such as PFO
- stroke
High blood pressure is very common in people with sleep apnea.
The Wisconsin Sleep Cohort Study estimated in 1993 that roughly one in every 15 Americans was affected by at least moderate sleep apnea. It also estimated that in middle-age as many as nine percent of women and 24 percent of men were affected, undiagnosed and untreated.
The costs of untreated sleep apnea reach further than just health issues. It is estimated that in the U.S. the average untreated sleep apnea patient's annual health care costs $1,336 more than an individual without sleep apnea. This may cause $3.4 billion/year in additional medical costs. Whether medical cost savings occur with treatment of sleep apnea remains to be determined.
Many studies indicate the effect of a "fight or flight" response on the body that happens with each apneic event is what increases health risks and consequences in OSA. The fight or flight response causes many hormonal changes in the body; those changes, coupled with the low oxygen saturation level of the blood, cause damage to the body over time.
Without treatment, the sleep deprivation and lack of oxygen caused by sleep apnea increases health risks such as cardiovascular disease, aortic disease (e.g. aortic aneurysm), high blood pressure, stroke, diabetes, clinical depression, weight gain and obesity.
The most serious consequence of untreated OSA is to the heart. Persons with sleep apnea have a 30% higher risk of heart attack or death than those unaffected. In severe and prolonged cases, increased in pulmonary pressures are transmitted to the right side of the heart. This can result in a severe form of congestive heart failure known as "cor pulmonale". Dyastolic function of the heart also becomes affected. One prospective study showed patients with OSA, compared with healthy controls, initially had statistically significant increases in vascular endothelial growth factor (P=.003) and significantly lower levels of nitrite-nitrate (P=.008), which might be pathogenic factors in the cardiovascular complications of OSA. These factors reversed to normal levels after 12 weeks of treatment by CPAP, but further long-term trials are needed to assess the impact of this therapy.
Elevated arterial pressure (i.e., hypertension) can be a consequence of OSA syndrome. When hypertension is caused by OSA, it is distinctive in that, unlike most cases (so-called essential hypertension), the readings do "not" drop significantly when the individual is sleeping (non-dipper) or even increase (inverted dipper).
OSA accompanied by daytime sleepiness is estimated to affect 3% to 7% of men and 2% to 5% of women, and the disease is common in both developed and developing countries. It is most commonly diagnosed in middle-aged males.
If studied carefully in a sleep lab by polysomnography (formal "sleep study"), it is believed that approximately 1 in 5 American adults would have at least mild OSA.
Statistics on snoring are often contradictory, but at least 30% of adults and perhaps as many as 50% of people in some demographics snore. One survey of 5,713 American residents identified habitual snoring in 24% of men and 13.8% of women, rising to 60% of men and 40% of women aged 60 to 65 years; this suggests an increased susceptibility to snoring with age.
DSPD is genetically linked to attention deficit hyperactivity disorder by findings of polymorphism in genes in common between those apparently involved in ADHD and those involved in the circadian rhythm and a high proportion of DSPD among those with ADHD.
The conditions of hypoxia and hypercapnia, whether caused by apnea or not, trigger additional effects on the body. The immediate effects of central sleep apnea on the body depend on how long the failure to breathe endures, how short is the interval between failures to breathe, and the presence or absence of independent conditions whose effects amplify those of an apneic episode.
- Brain cells need constant oxygen to live, and if the level of blood oxygen remains low enough for long enough, brain damage and even death will occur. These effects, however, are rarely a result of central sleep apnea, which is a chronic condition whose effects are usually much milder.
- Drops in blood oxygen levels that are severe but not severe enough to trigger brain-cell or overall death may trigger seizures even in the absence of epilepsy.
- In severe cases of sleep apnea, the more translucent areas of the body will show a bluish or dusky cast from cyanosis, the change in hue ("turning blue") produced by the deoxygenation of blood in vessels near the skin.
- Compounding effects of independent conditions:
There is some evidence that a predisposition to night terrors and other parasomnias may be congenital. Individuals frequently report that past family members have had either episodes of sleep terrors or sleepwalking. In some studies, a ten-fold increase in the prevalence of night terrors in first-degree biological relatives has been observed—however, the exact link to inheritance is not known. Familial aggregation has been found suggesting that there is an autosomal mode of inheritance. In addition, some laboratory findings suggest that sleep deprivation and having a fever can increase the likelihood of a night terror episode occurring. Other contributing factors include nocturnal asthma, gastroesophageal reflux, and central nervous system medications. Special consideration must be used when the subject suffers from narcolepsy, as there may be a link. There have been no findings that show a cultural difference between manifestations of night terrors, though it is thought that the significance and cause of night terrors differ within cultures. Evidence suggests that nightmares are more common among women than men.
Also, older children and adults provide highly detailed and descriptive images associated with their sleep terrors compared to younger children, who either cannot recall or only vaguely remember. Sleep terrors in children are also more likely to occur in males than females; in adults, the ratio between sexes is equal. A longitudinal study examined twins, both identical and fraternal, and found that a significantly higher concordance rate of night terror was found in identical twins than in fraternal.
Though the symptoms of night terrors in adolescents and adults are similar, their causes, prognoses, and treatments are qualitatively different. There is some evidence that suggests that night terrors can occur if the sufferer does not eat a proper diet, does not get the appropriate amount or quality of sleep (e.g., because of sleep apnea), or is enduring stressful events. Adults who have experienced sexual abuse are more likely to receive a diagnosis of sleep disorders, including night terrors. Overall, though, adult night terrors are much less common and often respond best to treatments that rectify causes of poor quality or quantity of sleep.
The most comprehensive assessment so far has estimated RBD prevalence to be about 0.5% in individuals aged 15 to 100. It is far more common in males: most studies report that only about a tenth of sufferers are female. This may partially be due to a referral bias, as violent activity carried out by men is more likely to result in harm and injury and is more likely to be reported than injury to male bed partners by women, or it may reflect a true difference in prevalence as a result of genetic or androgenic factors. The mean age of onset is estimated to be about 60 years.
Various conditions are very similar to RBD in that sufferers exhibit excessive sleep movement and potentially violent behavior. Such disorders include sleepwalking and sleep terrors, which are associated with other stages of sleep, nocturnal seizures and obstructive sleep apnea which can induce arousals from REM sleep associated with complex behaviors. Because of the similarities between the conditions, polysomnography plays an important role in confirming RBD diagnosis.
It is now apparent that RBD appears in association with a variety of different conditions. Narcolepsy has been reported as a related disorder. Both RBD and narcolepsy involve dissociation of sleep states probably arising from a disruption of sleep control mechanisms. RBD has also been reported following cerebrovascular accident and neurinoma (tumor), indicating that damage to the brain stem area may precipitate RBD. RBD is usually chronic. However, it may be acute and sudden in onset if associated with drug treatment or withdrawal (particularly with alcohol withdrawal). 60% of RBD is idiopathic. This includes RBD that is found in association with conditions such as Parkinson's disease and dementia with Lewy bodies, where it is often seen to precede the onset of neurodegenerative disease. Monoamine oxidase inhibitors, tricyclic antidepressants, Selective serotonin reuptake inhibitors, and noradrenergic antagonists can induce or aggravate RBD symptoms and should be avoided in patients with RBD.
Among the causes of hypopnea are:
- anatomical defects such as nasal septum deformation or congenital narrowness of nasal meatus and the gullet
- acute tonsillitis and/or adenoiditis
- obesity or being overweight
- neuromuscular disease or any condition that entails weakened respiratory muscles
- hypoventilation syndromes involving compromised or failed respiratory drive
- use of sedatives e.g. sleeping pills
- alcohol abuse
- smoking
- aging
- others, most of which are also typical causes of airway obstruction, snoring and sleep apnea
Persons with obsessive-compulsive disorder are also diagnosed with DSPD at a much higher rate than the general public.
Histamine plays a role in wakefulness in the brain. An allergic reaction over produces histamine causing wakefulness and inhibiting sleep Sleep problems are common in people with allergic rhinitis. A study from the N.I.H. found that sleep is dramatically impaired by allergic symptoms and that the degree of impairment is related to the severity of those symptoms s Treatment of allergies has also been shown to help sleep apnea.
Sexsomnia affects individuals of all age groups and backgrounds but present as an increased risk for individuals who possess the following:
- coexisting sleep disorders
- sleep disruption secondary to obstructive sleep apnea
- sleep related epilepsy
- certain medications
Behaviors of pelvic thrusting, sexual arousal, and orgasms are often attributed to sleep related epilepsy disorder. In some cases, physical contact with a partner in bed acted as a trigger to initiate sexsomia behaviors.
Medications, such as the commonly prescribed treatment for insomnia, Ambien, have been shown to induce symptoms commonly associated with sexsomnia.
Like sleep-related eating disorders, sexsomnia presents more commonly in adults than children. However, these individuals usually have a history of parasomnias that began during childhood.
Waking up in the middle of the night, or nocturnal awakening, is the most frequently reported insomnia symptom, with approximately 35% of Americans over 18 reporting waking up three or more times per week. Of those who experience nocturnal awakenings, 43% report difficulty in resuming sleep after waking, while over 90% report the condition persisting for more than six months. Greater than 50% contend with MOTN conditions for more than five years.
A 2008 "Sleep in America" poll conducted by the National Sleep Foundation found that 42% of respondents awakened during the night at least a few nights a week, and 29% said they woke up too early and couldn’t get back to sleep. Other clinical studies have reported between 25% and 35% of people experience nocturnal awakenings at least three nights a week.
Among the natural remedies are exercises to increase the muscle tone of the upper airway, and one medical practitioner noting anecdotally that professional singers seldom snore, but there have been no medical studies to fully link the two.
Although "there has been no cure of chronic hypersomnia", there are several treatments that may improve patients' quality of life, depending on the specific cause or causes of hypersomnia that are diagnosed.
Idiopathic hypersomnia is a lifelong disorder (with only rare spontaneous remissions) whose symptoms typically begin in adolescence or young adulthood. It is initially progressive, but may stabilize, and its main consequences are professional and social.
Idiopathic hypersomnia profoundly affects work, education, and quality of life. Patients are often too sleepy to work or attend school regularly, and they are predisposed "to develop serious performance decrements in multiple areas of function as well as to potentially life-threatening domestic, work-related and driving accidents." Furthermore, these risks are higher for idiopathic hypersomnia patients than for those with sleep apnea or severe insomnia. In fact, "the most severe cases of daytime somnolence are found in patients affected by narcolepsy or idiopathic hypersomnia." And idiopathic hypersomnia is often as, if not more, disabling than narcolepsy; surprisingly, excessive daytime sleepiness is even more handicapping than the cataplectic attacks of narcolepsy.
Due to the consequences of their profound EDS, both idiopathic hypersomnia and narcolepsy can often result in unemployment. Several studies have shown a high rate of unemployment in narcoleptics (from 30-59%), which was felt to be related to the severe symptoms of their illness.
Recurrent Isolated Sleep Paralysis is an inability to perform voluntary movements at sleep onset, or upon waking from sleep.
According to one meta-analysis, the mean prevalence rate for North America and Western Europe is estimated to be 14.5±8.0%. Specifically in the United States, the prevalence of restless leg syndrome is estimated to be between 5 and 15.7% when using strict diagnostic criteria. RLS is over 35% more prevalent in American women than their male counterparts.
Congenital central hypoventilation syndrome (CCHS), often referred to by its older name "Ondine's curse," is a rare and very severe inborn form of abnormal interruption and reduction in breathing during sleep. This condition involves a specific homeobox gene, PHOX2B, which guides maturation of the autonomic nervous system; certain loss-of-function mutations interfere with the brain's development of the ability to effectively control breathing. There may be a recognizable pattern of facial features among individuals affected with this syndrome.
Once almost uniformly fatal, CCHS is now treatable. Children who have it must have tracheotomies and access to mechanical ventilation on respirators while sleeping, but most do not need to use a respirator while awake. The use of a diaphragmatic pacemaker may offer an alternative for some patients. When pacemakers have enabled some children to sleep without the use of a mechanical respirator, reported cases still required the tracheotomy to remain in place because the vocal cords did not move apart with inhalation.
Persons with the syndrome who survive to adulthood are strongly instructed to avoid certain condition-aggravating factors, such as alcohol use, which can easily prove lethal.
Symptoms of sexsomnia can be caused by or be associated with:
- stress factors
- sleep deprivation
- Consumption of alcohol or other drugs
- Pre-existing parasomnia behaviors
Sleep deprivation is known to have negative effects on the brain and behavior. Extended periods of sleep deprivation often results in the malfunctioning of neurons, directly effecting an individual's behavior. While muscles are able to regenerate even in the absence of sleep, neurons are incapable of this ability. Specific stages of sleep are responsible for the regeneration of neurons while others are responsible for the generation of new synaptic connections, the formation of new memories, etc.
Zolpidem, the widely known sedative Ambien, is used as common treatment for insomnia and has been seen to result in sexsomnia as an adverse effect.
Sexsomnia can also be triggered by physical contact initiated by a partner, or an individual sharing the same bed.
A link between GlaxoSmithKline's H1N1 flu vaccine Pandemrix and childhood narcolepsy was investigated due to increased prevalence of narcolepsy in Irish, Finnish and Swedish children after vaccinations. Finland's National Institute of Health and Welfare recommended that Pandemrix vaccinations be suspended pending further investigation into 15 reported cases of children developing narcolepsy. In Finland in mid-November 2010, 37 cases of children's narcolepsy had been reported by doctors. This can be compared to the normal average of 3 cases of children's narcolepsy per year. "The incidence of narcolepsy with cataplexy in children/adolescents in the Swedish population increased during the pandemic and vaccination period, with a rapid decline in incidence during the post pandemic period." They concluded that these results "provide strengthened evidence that vaccination with Pandemrix during the pandemic period could be associated with an increase in the risk for narcolepsy with cataplexy in predisposed children/adolescents 19 years and younger." In 2013, the link between Pandemrix and narcolepsy was confirmed by a registry study by the Swedish Medical Products Agency, with a three-fold increase in risk for people under the age of 20.
There have been some studies suggesting levothyroxine as a possible treatment for idiopathic hypersomnia, especially for patients with subclinical hypothyroidism. This treatment does carry potential risks (especially for patients without hypothyroidism or subclinical hypothroidism), which include cardiac arrhythmia.
Night terrors typically occur in children between the ages of three and twelve years, with a peak onset in children aged three and a half years old.
An estimated 1–6% of children experience night terrors. Boys and girls of all ethnic backgrounds are affected equally. In children younger than three and a half years old, peak frequency of night terrors is at least one episode per week. Among older children, peak frequency of night terrors is one or two episodes per month. The children will most likely have no recollection of the episode the next day. Pediatric evaluation may be sought to exclude the possibility that the night terrors are caused by seizure disorders or breathing problems. Most children will outgrow sleep terrors.
Several circumstances have been identified that are associated with an increased risk of sleep paralysis. These include insomnia, sleep deprivation, an erratic sleep schedule, stress, and physical fatigue. It is also believed that there may be a genetic component in the development of RISP, because there is a high concurrent incidence of sleep paralysis in monozygotic twins. Sleeping in the supine position has been found an especially prominent instigator of sleep paralysis.
Sleeping in the supine position is believed to make the sleeper more vulnerable to episodes of sleep paralysis because in this sleeping position it is possible for the soft palate to collapse and obstruct the airway. This is a possibility regardless of whether the individual has been diagnosed with sleep apnea or not. There may also be a greater rate of microarousals while sleeping in the supine position because there is a greater amount of pressure being exerted on the lungs by gravity.
While many factors can increase risk for ISP or RISP, they can be avoided with minor lifestyle changes. By maintaining a regular sleep schedule and observing good sleep hygiene, one can reduce chances of sleep paralysis. It helps subjects to reduce the intake of stimulants and stress in daily life by taking up a hobby or seeing a trained psychologist who can suggest coping mechanisms for stress. However, some cases of ISP and RISP involve a genetic factor—which means some people may find sleep paralysis unavoidable. Practicing meditation regularly might also be helpful in preventing fragmented sleep, and thus the occurrence of sleep paralysis. Research has shown that long-term meditation practitioners spend more time in slow wave sleep, and as such regular meditation practice could reduce nocturnal arousal and thus possibly sleep paralysis.