Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The cause of complement deficiency is genetics (though cases of an acquired nature do exist post infection). The majority of complement deficiencies are autosomal recessive, while properdin deficiency could be X-linked inheritance, and finally MBL deficiency can be both.
Acquired hypocomplementemia may occur in the setting of bone infections (osteomyelitis), infection of the lining of the heart (endocarditis), and cryoglobulinemia. Systemic lupus erythematosus is associated with low C3 and C4 Membranoproliferative glomerulonephritis usually has low C3.
Patients with terminal complement pathway deficiency should receive meningococcal and pneumococcal vaccinations. They can receive live vaccines.
Heterozygous protein C deficiency occurs in 0.14–0.50% of the general population. Based on an estimated carrier rate of 0.2%, a homozygous or compound heterozygous protein C deficiency incidence of 1 per 4 million births could be predicted, although far fewer living patients have been identified. This low prevalence of patients with severe genetic protein C deficiency may be explained by excessive fetal demise, early postnatal deaths before diagnosis, heterogeneity in the cause of low concentrations of protein C among healthy individuals and under-reporting.
The incidence of protein C deficiency in individuals who present with clinical symptoms has been reported to be estimated at 1 in 20,000.
A survey of 10,000 American households revealed that the prevalence of diagnosed primary immunodeficiency approaches 1 in 1200. This figure does not take into account people with mild immune system defects who have not received a formal diagnosis.
Milder forms of primary immunodeficiency, such as selective immunoglobulin A deficiency, are fairly common, with random groups of people (such as otherwise healthy blood donors) having a rate of 1:600. Other disorders are distinctly more uncommon, with incidences between 1:100,000 and 1:2,000,000 being reported.
By definition, primary immune deficiencies are due to genetic causes. They may result from a single genetic defect, but most are multifactorial. They may be caused by recessive or dominant inheritance. Some are latent, and require a certain environmental trigger to become manifest, like the presence in the environment of a reactive allergen. Other problems become apparent due to aging of bodily and cellular maintenance processes.
Complement 2 deficiency is a type of complement deficiency caused by any one of several different alterations in the structure of complement component 2.
It has been associated with an increase in infections.
It can present similarly to systemic lupus erythematosus (SLE).
Complement 3 deficiency is a genetic condition affecting complement component 3.
It can cause systemic lupus erythematosus-like symptoms.
It can lead to an increase in pyogenic infections from encapsulated bacteria.
Suspect terminal complement pathway deficiency with patients who have more than one episode of Neisseria infection.
Initial complement tests often include C3 and C4, but not C5 through C9. Instead, the CH50 result may play a role in diagnosis: if the CH50 level is low but C3 and C4 are normal, then analysis of the individual terminal components may be warranted.
Complement 4 deficiency is a genetic condition affecting complement component 4.
It can present with lupus-like symptoms.
Estimating the mortality rate based on the available literature is difficult. Several case reports have revealed an association between acquired partial lipodystrophy and other diseases.
Nephropathy, in the form of membranoproliferative glomerulonephritis, occurs in about 20% of patients. Usually, patients do not have clinically evident renal disease or abnormalities in renal function until they have had the disease for 8 or more years. Membranoproliferative glomerulonephritis usually presents with asymptomatic proteinuria or hematuria.
The disease may gradually progress. About 40-50% of patients develop end-stage renal disease over the course of 10 years. This condition is responsible for most recurrent hospital admissions in patients with acquired partial lipodystrophy. Rapid progression of renal disease in a pregnant patient was reported. Recurrent disease in transplanted kidneys is common, although there have been reports of successful transplantations.
Associated autoimmune diseases (e.g., systemic lupus erythematosus, thyroiditis) contribute significantly to increased morbidity in these patients compared with the general population. Although uncommon, insulin resistance increases cardiovascular risk. Susceptibility to bacterial infections probably results from a C3 deficiency (due to complement activation and consumption of C3). Low C3 levels may impair complement-mediated phagocytosis and bacterial killing.
Properdin deficiency is a rare X-linked disease in which properdin, an important complement factor, is deficient. Affected individuals are susceptible to fulminant meningococcal disease.
Protein C deficiency is a rare genetic trait that predisposes to thrombotic disease. It was first described in 1981. The disease belongs to a group of genetic disorders known as thrombophilias. Protein C deficiency is associated with an increased incidence of venous thromboembolism (relative risk 8–10), whereas no association with arterial thrombotic disease has been found.
Around 250 cases have been reported since the recognition of this syndrome. It is a rare syndrome with no known prevalence, although it is more common than the generalized form of acquired lipodystrophy (Lawrence syndrome).
- Race: No clear relationship exists between incidence and race in this syndrome; however, most reported patients have been of European descent.
- Age: The median age of onset of lipodystrophy has been reported to be around seven years; however, onset occurring as late as the fourth or fifth decade of life also has been reported. The median age at presentation has been about 25 years, and women have been found to present later than men (age 28 for women, age 18 for men).
- Sex: Analysis of the pooled data revealed female patients were affected about four times more often than males.
Inherited or congenital FVII deficiency is passed on by autosomal recessive inheritance. A person needs to inherit a defective gene from both parents. People who have only one defective gene do not exhibit the disease, but can pass the gene on to half their offspring. Different genetic mutations have been described.
In persons with the congenital FVII deficiency the condition is lifelong. People with this condition should alert other family members may they also have the condition or carry the gene. In the general population the condition affects about 1 in 300,000 to 500,000 people. However, the prevalence may be higher as not all individuals may express the disease and be diagnosed.
In the acquired of FVII deficiency an insufficient amount of factor VII is produced by the liver due to liver disease, vitamin K deficiency, or certain medications (i.e. Coumadin).
Leukocyte adhesion deficiency-1 (LAD1) is a rare and often fatal genetic disorder in humans.
Transaldolase deficiency is recognized as a rare inherited pleiotropic metabolic disorder first recognized and described in 2001 that is autosomal recessive. There have been only a few cases that have been noted, as of 2012 there have been 9 patients recognized with this disease and one fetus.
Protein S deficiency is a disorder associated with increased risk of venous thrombosis. Protein S, a vitamin K-dependent physiological anticoagulant, acts as a nonenzymatic cofactor to activate protein C in the degradation of factor Va and factor VIIIa. Decreased (antigen) levels or impaired function of protein S leads to decreased degradation of factor Va and factor VIIIa and an increased propensity to venous thrombosis. Protein S circulates in human plasma in two forms: approximately 60 percent is bound to complement component C4b β-chain while the remaining 40 percent is free, only free protein S has activated protein C cofactor activity
Because the CD18 gene has been cloned and sequenced, this disorder is a potential candidate for gene therapy.
There are several treatments available for factor VII deficiency; they all replace deficient FVII.
1. Recombinant FVIIa concentrate (rFVIIa) is a recombinant treatment that is highly effective and has no risk of fluid overload or viral disease. It may be the optimal therapy.
2. Plasma derived Factor VII concentrate (pdFVII) : This treatment is suitable for surgery but can lead to thrombosis. It is virus attenuated.
3. Prothrombin complex concentrate (PCC) containing factor VII: this treatment is suitable for surgery, but has a risk of thrombosis. It is virus attenuated.
4. Fresh frozen plasma (FFP): This is relatively inexpensive and readily available. While effective this treatment carries a risk of blood-borne viruses and fluid overload.
In terms of the cause of protein S deficiency it can be in "inherited" via autosomal dominance.A mutation in the PROS1 gene triggers the condition. The cytogenetic location of the gene in question is chromosome 3, specifically 3q11.1 Protein S deficiency can also be "acquired" due to vitamin K deficiency, treatment with warfarin, liver disease, and acute thrombosis (antiphospholipid antibodies may also be a cause as well)
Infant mortality is high for patients diagnosed with early onset; mortality can occur within less than 2 months, while children diagnosed with late-onset syndrome seem to have higher rates of survival. Patients suffering from a complete lesion of mut0 have not only the poorest outcome of those suffering from methylaonyl-CoA mutase deficiency, but also of all individuals suffering from any form of methylmalonic acidemia.
aHUS can be inherited or acquired, and does not appear to vary by race, gender, or geographic area. As expected with an ultra-rare disease, data on the prevalence of aHUS are extremely limited. A pediatric prevalence of 3.3 cases per million population is documented in one publication of a European hemolytic uremic syndrome (HUS) registry involving 167 pediatric patients.
Purpura fulminans is rare and most commonly occurs in babies and small children but can also be a rare manifestation in adults when it is associated with severe infections. For example, Meningococcal septicaemia is complicated by purpura fulminans in 10–20% of cases among children. Purpura fulminans associated with congenital (inherited) protein C deficiency occurs in 1:500,000–1,000,000 live births.
At this time there is no treatment for transaldolase deficiency.
There is currently research being done to find treatments for transaldolase deficiency. A study done in 2009 used orally administered N-acetylcysteine on transaldolase deficient mice and it prevented the symptoms associated with the disease. N-acetylcysteine is a precursor for reduced glutathione, which is decreased in transaldolase deficient patients.