Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Several studies found that healthcare-associated pneumonia is the second most common type of pneumonia, occurring less commonly than community-acquired pneumonia but more frequently than hospital-acquired pneumonia and ventilator-associated pneumonia. In a recent observational study, the rates for CAP, HCAP and HAP were 60%, 25% and 15% respectively. Patients with HCAP are older and more commonly have simultaneous health problems (such as previous stroke, heart failure and diabetes).
The number of residents in long term care facilities is expected to rise dramatically over the next 30 years. These older adults are known to develop pneumonia 10 times more than their community-dwelling peers, and hospital admittance rates are 30 times higher.
There are several risk factors that increase the likelihood of developing bacteremia from any type of bacteria. These include:
- HIV infection
- Diabetes Mellitus
- Chronic hemodialysis
- Solid organ transplant
- Stem cell transplant
- Treatment with glucocorticoids
- Liver failure
Gram negative bacterial species are responsible for approximately 24% of all cases of healthcare-associated bacteremia and 45% of all cases of community-acquired bacteremia. In general, gram negative bacteria enter the bloodstream from infections in the respiratory tract, genitourinary tract, gastrointestinal tract, or hepatobiliary system. Gram-negative bacteremia occurs more frequently in elderly populations (65 years or older) and is associated with higher morbidity and mortality in this population.
"E.coli" is the most common cause of community-acquired bacteremia accounting for approximately 75% of cases. E.coli bacteremia is usually the result of a urinary tract infection. Other organisms that can cause community-acquired bacteremia include "pseudomonas aeruginosa", "klebsiella pneumoniae", and "proteus mirabilis". "Salmonella" infection, despite mainly only resulting in gastroenteritis in the developed world, is a common cause of bacteremia in Africa. It principally affects children who lack antibodies to Salmonella and HIV+ patients of all ages.
Among healthcare-associated cases of bacteremia, gram negative organisms are an important cause of bacteremia in the ICU. Catheters in the veins, arteries, or urinary tract can all create a way for gram negative bacteria to enter the bloodstream. Surgical procedures of the genitourinary tract, intestinal tract, or hepatobiliary tract can also lead to gram negative bacteremia. "Pseudomonas" and "enterobacter" species are the most important causes of gram negative bacteremia in the ICU.
HCAP is a condition in patients who can come from the community, but have frequent contact with the healthcare environment. Historically, the etiology and prognosis of nursing home pneumonia appeared to differ from other types of community acquired pneumonia, with studies reporting a worse prognosis and higher incidence of multi drug resistant organisms as etiology agents. The definition criteria which has been used is the same as the one which has been previously used to identify bloodstream healthcare associated infections.
HCAP is no longer recognized as a clinically independent entity. This is due to increasing evidence from a growing number of studies that many patients defined as having HCAP are not at high risk for MDR pathogens. As a result, 2016 IDSA guidelines removed consideration of HCAP as a separate clinical entity.
The Centers for Disease Control and Prevention (CDC) estimated roughly 1.7 million hospital-associated infections, from all types of bacteria combined, cause or contribute to 99,000 deaths each year. Other estimates indicate 10%, or 2 million, patients a year become infected, with the annual cost ranging from $4.5 billion to $11 billion. In the USA, the most frequent type of infection hospitalwide is urinary tract infection (36%), followed by surgical site infection (20%), and bloodstream infection and pneumonia (both 11%).
CAP is common worldwide, and a major cause of death in all age groups. In children, most deaths (over two million a year) occur in newborn period. According to a World Health Organization estimate, one in three newborn deaths are from pneumonia. Mortality decreases with age until late adulthood, with the elderly at risk for CAP and its associated mortality.
More CAP cases occur during the winter than at other times of the year. CAP is more common in males than females, and more common in black people than Caucasians. Patients with underlying illnesses (such as Alzheimer's disease, cystic fibrosis, COPD, tobacco smoking, alcoholism or immune-system problems) have an increased risk of developing pneumonia.
A full spectrum of microorganisms is responsible for CAP in adults, and patients with certain risk factors are more susceptible to infections of certain groups of microorganisms. Identifying people at risk for infection by these organisms aids in appropriate treatment.
Many less-common organisms can cause CAP in adults, and are identified from specific risk factors or treatment failure for common causes.
In 2012 the Health Protection Agency reported the prevalence rate of HAIs in England was 6.4% in 2011, against a rate of 8.2% in 2006. With respiratory tract, urinary tract and surgical site infections the most common types of HAI reported.
Hospitals are primary transmission sites for CRE-based infections. Up to 75% of hospital admissions attributed to CRE were from long-term care facilities or transferred from another hospital. Suboptimal maintenance practices are the largest cause of CRE transmission. This includes the failure to adequately clean and disinfect medication cabinets, other surfaces in patient rooms, and portable medical equipment, such as X-ray and ultrasound machines that are used for both CRE and non-CRE patients.
Thus far, CRE have primarily been nosocomial infectious agents. Almost all CRE infections occur in people receiving significant medical care in hospitals, long-term acute care facilities, or nursing homes. Independent risk factors for CRE infection include use of beta-lactam antibiotics and the use of mechanical ventilation. Patients with diabetes have also been shown to be at an elevated risk for acquiring CRE infections. When compared to other hospitalized patients, those admitted from long-term acute care (LTAC) facilities have significantly higher incidence of colonization and infection rates. Another 2012 multicenter study found that over 30% of patients with recent exposure to LTAC were colonized or infected with CRE. A person susceptible to CRE transmission is more likely to be female, have a greater number of parenteral nutrition-days (meaning days by which the person received nutrition via the bloodstream), and to have had a significant number of days breathing through a ventilator.
Infections with carbapenem-resistant "Klebsiella pneumoniae" were associated with organ/stem cell transplantation, mechanical ventilation, exposure to antimicrobials, and overall longer length of stay in hospitals.
People most likely to acquire carbapenem-resistant bacteria are those already receiving medical attention. In a study carried out at Sheba medical center, there was a trend toward worse Charleson Comorbidity scores in patients who acquired CRKP during ICU stay. Those at highest risk are patients receiving an organ or stem cell implantation, use of mechanical ventilation, or have to have an extended stay in the hospital along with exposure to antimicrobials. In a study performed in Singapore, the acquisition of ertapenem-resistant Enterobacteriaceae to the acquisition of CRE. Exposure to antibiotics, especially fluoroquinolones, and previous hospitalization dramatically increased the risk of acquisition carbapenem-resistant bacteria. This study found that carbapenem-resistant acquisition has a significantly higher mortality rate and poorer clinical response compared to that of the ertapenem-resistance acquisition.
Bacteruria (also known as urinary tract infection) caused by CRKp and CSKp have similar risk factors. These include prior antibiotic use, admittance to an ICU, use of a permanent urinary catheter, and previous invasive procedures or operations. A retrospective study of patients with CRKp and CSKp infection asserted that the use of cephalosporins (a class of β-lactam antibiotics) used before invasive procedures was higher in patients with CRKp infection, suggesting that it is a risk factor.
In a three-year study, the prevalence of CRE was shown to be proportional to the lengths of stays of the patients in those hospitals. Policies regarding contact precaution for patients infected or colonized by Gram-negative pathogens were also observed in hospitals reporting decreases in CRE prevalence.
One case study showed that patients with a compromised immune response are especially susceptible to both CRE exposure and infection. In one study, an elderly patient with acute lymphoblastic leukemia being treated in a long-term care facility contracted a CRE infection. Her age and condition, combined with her environment and regulation by a catheter and mechanical ventilation, all contributed to a higher susceptibility. This highlights the importance of finding the source of the bacteria, as members of this class of patients are at continued risk for infection. Infection control and prevention of CRE should be the main focus in managing patients at high risk.
Another major risk factor is being in a country with unregulated antibiotic distribution. In countries where antibiotics are over-the counter and obtainable without a prescription, the incidence and prevalence of CRE infections were higher. One study from Japan found that 6.4% of healthy adults carried ESBL (mostly cefotaximase)-producing strains compared to 58.4% in Thailand, where antibiotics are available over the counter and without prescription. An Egyptian research group found that 63.3% of healthy adults were colonized.
In February 2015, the FDA reported about a transmission risk when people undergo a gastroenterology procedure called endoscopic retrograde cholangiopancreatography, where an endoscope enters the mouth, passes the stomach, and ends in the duodenum; if incompletely disinfected, the device can transmit CRE from one patient to another. The FDA's safety communication came a day after the UCLA Health System, Los Angeles, notified more than 100 patients that they may have been infected with CRE during endoscopies between October 2014 and January 2015. The FDA had issued its first notice about the devices in 2009.
CRE resistance depends upon a number of factors such as the health of the patient, whether the patient has recently undergone a transplant, risk of co-infection, and use of multiple antibiotics.
Carbapenem minimal inhibitory concentrations (MICs) results may be more predictive of clinical patient outcomes than the current categorical classification of the MICs being listed as susceptible, intermediate, or resistant. The study aimed to define an all-cause hospital mortality breakpoint for carbapenem MICs that were adjusted for risk factors. Another objective was to determine if a similar breakpoint existed for indirect outcomes, such as the time to death and length of stay after infection for survivors. Seventy-one patients were included, of which 52 patients survived and 19 patients died. Classification and regression tree analysis determined a split of organism MIC between 2 and 4 mg/liter and predicted differences in mortality (16.1% for 2 mg/liter versus 76.9% for 4 mg/liter). In logistic regression controlling for confounders, each imipenem MIC doubling dilution doubled the probability of death. This classification scheme correctly predicted 82.6% of cases. Patients were accordingly stratified to MICs of ≤2 mg/liter (58 patients) and ≥4 mg/liter (13 patients). Patients in the group with a MIC of ≥4 mg/liter tended to be more ill. Secondary outcomes were also similar between groups. Patients with organisms that had an MIC of ≥4 mg/liter had worse outcomes than those with isolates of an MIC of ≤2 mg/liter.
At New York Presbyterian Hospital, part of Columbia University Medical Center in New York, NY, a study was conducted on the significant rise in carbapenem resistance in "K. pneumoniae" from 1999 to 2007. Following a positive blood culture from a patient, overall mortality was 23% in 7 days, 42% in 30 days, and 60% by the end of hospitalization. The overall in-hospital mortality rate was 48%.
At Soroka Medical Center, an Israeli university teaching hospital, a study was done between October 2005 and October 2008 to determine the direct mortality rate associated with carbapenem-resistant "K. pneumoniae" bloodstream infections. The crude mortality rate for those with the resistant bacteremia was 71.9%, and the attributable mortality rate was determined to be 50% with a 95% confidence interval. The crude mortality rate for control subjects was 21.9%. As a result of the study, Soroka Medical Center started an intensive program designed to prevent the spread of carbapenem-resistant "K. pneumoniae."
A 2013 retrospective study at the Shaare Zedek Medical Center of patients with urinary tract infections (bacteriuria) caused by carbapenem-resistant "Klebsiella pneumoniae" (CRKp) showed no statistically significant difference in mortality rates from patients with bacteriuria caused by carbapenem-susceptible "K. pneumoniae" (CSKp). A 29% mortality rate was seen in patients with CRKp infection compared to a 25% mortality rate in patients with CSKp infections that produced extended-spectrum beta-lactamase (ESBL). Both mortality rates were considerably higher than that of patients with drug-susceptible urosepsis. Most patients in the study suffered from other illnesses, including dementia, immune compromise, renal failure, or diabetes mellitus. The main risk factor for death found by the study was being bedridden, which significantly increased the chance of death. This suggests that the deaths were due to reasons other than bacteriuria. Total length of hospitalization was somewhat longer in patients with CRKp infections (28 ± 33 days compared to 22 ± 28 days for patients with CSKp infection).
In a case-control study of 99 patients compared with 99 controls at Mount Sinai Hospital (Manhattan), a 1,171 bed tertiary care teaching hospital, 38% of patients in long-term care that were afflicted with CRE died from "K. pneumoniae" infection. Patients had risk factors including diabetes, HIV infection, heart disease, liver disease, renal insufficiency, one was a transplant recipient. 72% of patients who were released from the hospital with CRE were readmitted within 90 days.
A 2008 study at Mount Sinai identified outcomes associated with Carbapenem-resistant "Klebsiella pneumoniae" infections, in which patients in need of organ or stem cell transplants, mechanical ventilation, prolonged hospitalization, or prior treatment with carbapenems, had an increased probability of infection with Carbapenem-resistant "K. pneumoniae". A combination of antibiotics worked to treat infection and survival rates of infected patients increased when the focus of infection was removed.
CRE infections can set in about 12 days after liver transplantation, and 18% of those patients died a year after transplantation in a 2012 study.
"Klebsiella" resistant strains have been recorded in USA with a roughly threefold increase in Chicago cases, quarantined individuals in Israel, United Kingdom and parts of Europe, possible ground zero, or location of emergence, is the India-Pakistan border.
A strain known as Carbapenem-Resistant Klebsiella pneumonia (CRKP) was estimated to be involved in 350 cases in Los Angeles county between June and December 2010.
Prevention of bacterial pneumonia is by vaccination against "Streptococcus pneumoniae" (pneumococcal polysaccharide vaccine for adults and pneumococcal conjugate vaccine for children), "Haemophilus influenzae" type B, meningococcus, "Bordetella pertussis", "Bacillus anthracis", and "Yersinia pestis".
The cause of the condition Klebsiella pneumonia is "Klebsiella pneumoniae" which is gram-negative, as well as rod-shaped, glucose-fermenting, facultative anaerobic bacterium.
People who have difficulty breathing due to pneumonia may require extra oxygen. An extremely sick individual may require artificial ventilation and intensive care as life-saving measures while his or her immune system fights off the infectious cause with the help of antibiotics and other drugs.
With treatment, most types of bacterial pneumonia will stabilize in 3–6 days. It often takes a few weeks before most symptoms resolve. X-ray finding typically clear within four weeks and mortality is low (less than 1%). In the elderly or people with other lung problems, recovery may take more than 12 weeks. In persons requiring hospitalization, mortality may be as high as 10%, and in those requiring intensive care it may reach 30–50%. Pneumonia is the most common hospital-acquired infection that causes death. Before the advent of antibiotics, mortality was typically 30% in those that were hospitalized.
Complications may occur in particular in the elderly and those with underlying health problems. This may include, among others: empyema, lung abscess, bronchiolitis obliterans, acute respiratory distress syndrome, sepsis, and worsening of underlying health problems.
Clinical prediction rules have been developed to more objectively predict outcomes of pneumonia. These rules are often used in deciding whether or not to hospitalize the person.
- Pneumonia severity index (or "PSI Score")
- CURB-65 score, which takes into account the severity of symptoms, any underlying diseases, and age
Diagnosis is made with isolation of "Pasteurella multocida" in a normally sterile site (blood, pus, or cerebrospinal fluid).
As the infection is usually transmitted into humans through animal bites, antibiotics usually treat the infection, but medical attention should be sought if the wound is severely swelling. Pasteurellosis is usually treated with high-dose penicillin if severe. Either tetracycline or chloramphenicol provides an alternative in beta-lactam-intolerant patients. However, it is most important to treat the wound.
Since the start of the AIDS epidemic, PCP has been closely associated with AIDS. Because it only occurs in an immunocompromised host, it may be the first clue to a new AIDS diagnosis if the patient has no other reason to be immunocompromised (e.g. taking immunosuppressive drugs for organ transplant). An unusual rise in the number of PCP cases in North America, noticed when physicians began requesting large quantities of the rarely used antibiotic pentamidine, was the first clue to the existence of AIDS in the early 1980s.
Prior to the development of more effective treatments, PCP was a common and rapid cause of death in persons living with AIDS. Much of the incidence of PCP has been reduced by instituting a standard practice of using oral co-trimoxazole (Bactrim / Septra) to prevent the disease in people with CD4 counts less than 200/μL. In populations that do not have access to preventive treatment, PCP continues to be a major cause of death in AIDS.
Common multidrug-resistant organisms are usually bacteria:
- Vancomycin-Resistant Enterococci (VRE)
- Methicillin-Resistant "Staphylococcus" "aureus" (MRSA)
- Extended-spectrum β-lactamase (ESBLs) producing Gram-negative bacteria
- "Klebsiella" "pneumoniae" carbapenemase (KPC) producing Gram-negatives
- Multidrug-Resistant gram negative rods (MDR GNR) MDRGN bacteria such as "Enterobacter species", "E.coli", "Klebsiella pneumoniae", "Acinetobacter baumannii", "Pseudomonas aeruginosa"
A group of gram-positive and gram-negative bacteria of particular recent importance have been dubbed as the ESKAPE group ("Enterococcus faecium", "Staphylococcus aureus", "Klebsiella pneumoniae", "Acinetobacter baumannii", "Pseudomonas aeruginosa" and Enterobacter species).
- Multi-drug-resistant tuberculosis
The disease PCP is relatively rare in people with normal immune systems, but common among people with weakened immune systems, such as premature or severely malnourished children, the elderly, and especially persons living with HIV/AIDS (in whom it is most commonly observed). PCP can also develop in patients who are taking immunosuppressive medications. It can occur in patients who have undergone solid organ transplantation or bone marrow transplantation and after surgery. Infections with "Pneumocystis" pneumonia are also common in infants with hyper IgM syndrome, an X-linked or autosomal recessive trait.
The causative organism of PCP is distributed worldwide and "Pneumocystis" pneumonia has been described in all continents except Antarctica. Greater than 75% of children are seropositive by the age of 4, which suggests a high background exposure to the organism. A post-mortem study conducted in Chile of 96 persons who died of unrelated causes (suicide, traffic accidents, and so forth) found that 65 (68%) of them had pneumocystis in their lungs, which suggests that asymptomatic pneumocystis infection is extremely common.
"Pneumocystis jirovecii" was originally described as a rare cause of pneumonia in neonates. It is commonly believed to be a commensal organism (dependent upon its human host for survival). The possibility of person-to-person transmission has recently gained credence, with supporting evidence coming from many different genotyping studies of "Pneumocystis jirovecii" isolates from human lung tissue. For example, in one outbreak of 12 cases among transplant patients in Leiden, it was suggested as likely, but not proven, that human-to-human spread may have occurred.
The prime example for MDR against antiparasitic drugs is malaria. "Plasmodium vivax" has become chloroquine and sulfadoxine-pyrimethamine resistant a few decades ago, and as of 2012 artemisinin-resistant Plasmodium falciparum has emerged in western Cambodia and western Thailand.
"Toxoplasma gondii" can also become resistant to artemisinin, as well as atovaquone and sulfadiazine, but is not usually MDR
Antihelminthic resistance is mainly reported in the veterinary literature, for example in connection with the practice of livestock drenching and has been recent focus of FDA regulation.
Patients with ascites underwent routine paracentesis, the incidence of active SBP ranged from 10% to 27% at the time of hospital admission.
Actinomycosis is primarily caused by any of several members of the bacterial genus "Actinomyces". These bacteria are generally anaerobes. In animals, they normally live in the small spaces between the teeth and gums, causing infection only when they can multiply freely in anoxic environments. An affected human often has recently had dental work, poor oral hygiene, periodontal disease, radiation therapy, or trauma (broken jaw) causing local tissue damage to the oral mucosa, all of which predispose the person to developing actinomycosis. "A. israelii" is a normal commensal species part of the microbiota species of the lower reproductive tract of women. They are also normal commensals among the gut flora of the caecum; thus, abdominal actinomycosis can occur following removal of the appendix. The three most common sites of infection are decayed teeth, the lungs, and the intestines. Actinomycosis does not occur in isolation from other bacteria. This infection depends on other bacteria (Gram-positive, Gram-negative, and cocci) to aid in invasion of tissue.
"Ureaplasma urealyticum" is a species in the genus "Ureaplasma" that can cause infection. Though most bacteria possess a cell wall, "U urealyticum" does not. It is found in about 70% of sexually active humans. It can be found in cultures in cases of pelvic inflammatory disease and is transmitted through sexual activity or from mother to infant during birth. It is not a commensal of the healthy uterine or amniotic microbiome. Infection with "U. realyticum" can contribute neonatal infection and negative birth outcomes.