Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
This syndrome is characterized by an increased susceptibility to disseminated nontuberculous mycobacterial infections, viral infections, especially with human papillomaviruses, and fungal infections, primarily histoplasmosis, and molds. There is profound monocytopenia, B lymphocytopenia and NK lymphocytopenia. Patients have an increased chance of developing malignancies, including: myelodysplasia/leukemia vulvar carcinoma, metastatic melanoma, cervical carcinoma, Bowen disease of the vulva, and multiple Epstein-Barr virus(+) leiomyosarcoma. Patients may also develop pulmonary alveolar proteinosis without mutations in the granulocyte-macrophage colony-stimulating factor receptor or anti-granulocyte-macrophage colony-stimulating factor autoantibodies. Last, patients may develop autoimmune phenomena, including lupus like syndromes, primary biliary cirrhosis or aggressive multiple sclerosis.
Of the 26, now 28, patients probably afflicted by this syndrome, 48% died of causes ranging from cancer to myelodysplasia with a mean age at death of 34.7 years and median age of 36.5 years.
CVID has an estimated prevalence of about 1:50,000 in caucasians. The disease seems to be less prevalent amongst Asians and African-Americans. Males and females are equally affected; however, among children, boys predominate. A recent study of people in European with primary immunodeficiencies found that 30% had CVID, as opposed to a different immunodeficiency. 10-25% of people inherited the disease, typically through autosomal-dominant inheritance. Given the rarity of the disease, it is not yet possible to generalize on disease prevalence among ethnic and racial groups. CVID shortens the life-span; the median age of death for men and women is 42 and 44 years old, respectively. Those people with accompanying disorders had the worst prognosis and those people with CVID only had frequent infections had the longest survival rates, with life expectancy almost equalling that of the general UK population. Additionally, people with CVID with one or more noninfectious complications have an 11 times higher risk of death as compared to people with only infections.
Current research is aimed at studying large cohorts of people with CVID in an attempt to better understand age of onset, as well as mechanism, genetic factors, and progression of the disease.
Funding for research in the US is provided by the National Institutes of Health. Key research in the UK was previously funded by the Primary Immunodeficiency Association (PiA) until its closure in January 2012, and funding is raised through the annual Jeans for Genes campaign. Current efforts are aimed at studying the following:
- Causes of complications. Little is known about why such diverse complications arise during treatment
- Underlying genetic factors. Though many polymorphisms and mutations have been identified, their respective roles in CVID development are poorly understood, and not represented in all people with CVID.
- Finding new ways to study CVID. Given that CVID arises from more than one gene, gene knock-out methods are unlikely to be helpful. It is necessary to seek out disease related polymorphisms by screening large populations of people with CVID, but this is challenging given the rarity of the disease.
MonoMAC is a rare autosomal dominant syndrome associated with monocytopenia, B and NK cell lymphopenia and mycobacterial, fungal and viral infections. It was first described by Vihn and colleagues in 2010 and is associated with myelodysplasia, cytogenetic abnormalities, pulmonary alveolar proteinosis and myeloid leukemias. Multiple mutations in the GATA2 are considered to be responsible for this syndrome.
By definition, primary immune deficiencies are due to genetic causes. They may result from a single genetic defect, but most are multifactorial. They may be caused by recessive or dominant inheritance. Some are latent, and require a certain environmental trigger to become manifest, like the presence in the environment of a reactive allergen. Other problems become apparent due to aging of bodily and cellular maintenance processes.
There is no information on birth ratios/rates, but "X-Linked SCID is the most common form of SCID and it has been estimated to account for 46% to 70% of all SCID cases."
Viral infection is a very common cause of lymphoproliferative disorders. In children, the most common is believed to be congenital HIV infection because it is highly associated with acquired immunodeficiency, which often leads to lymphoproliferative disorders.
Children with DOCK8 deficiency do not tend to live long; sepsis is a common cause of death at a young age. CNS and vascular complications are other common causes of death.
A survey of 10,000 American households revealed that the prevalence of diagnosed primary immunodeficiency approaches 1 in 1200. This figure does not take into account people with mild immune system defects who have not received a formal diagnosis.
Milder forms of primary immunodeficiency, such as selective immunoglobulin A deficiency, are fairly common, with random groups of people (such as otherwise healthy blood donors) having a rate of 1:600. Other disorders are distinctly more uncommon, with incidences between 1:100,000 and 1:2,000,000 being reported.
XMEN disease is a rare genetic disorder of the immune system that illustrates the role of Mg2+ in cell signaling. XMEN stands for “X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV) infection, and neoplasia.” It is characterized by CD4 lymphopenia, severe chronic viral infections, and defective T-lymphocyte activation. Investigators in the laboratory of Dr. Michael Lenardo, National Institute of Allergy and Infectious Diseases at the National Institutes of Health first described this condition in 2011.
DOCK8 deficiency is very rare, estimated to be found in less than one person per million; there have been 32 patients diagnosed as of 2012.
The cause of immunodeficiency varies depending on the nature of the disorder. The cause can be either genetic or acquired by malnutrition and poor sanitary conditions. Only for some genetic causes, the exact genes are known. Although there is no true discrimination to who this disease affects, the genes are passed from mother to child, and on occasion from father to child. Women tend not to show symptoms due to their second X chromosome not having the mutation while man are symptomatic, due to having one X chromosome.
WHIM Syndrome (or Warts, Hypogammaglobulinemia, Immunodeficiency, and Myelokathexis syndrome) is a rare congenital immunodeficiency disorder characterized by chronic noncyclic neutropenia.
Serology (detection on antibodies to a specific pathogen or antigen) is often used to diagnose viral diseases. Because XLA patients lack antibodies, these tests always give a negative result regardless of their real condition. This applies to standard HIV tests. Special blood tests (such as the western blot based test) are required for proper viral diagnosis in XLA patients.
It is not recommended and dangerous for XLA patients to receive live attenuated vaccines such as live polio, or the measles, mumps, rubella (MMR vaccine). Special emphasis is given to avoiding the oral live attenuated SABIN-type polio vaccine that has been reported to cause polio to XLA patients. Furthermore, it is not known if active vaccines in general have any beneficial effect on XLA patients as they lack normal ability to maintain immune memory.
XLA patients are specifically susceptible to viruses of the Enterovirus family, and mostly to: polio virus, coxsackie virus (hand, foot, and mouth disease) and Echoviruses. These may cause severe central nervous system conditions as chronic encephalitis, meningitis and death. An experimental anti-viral agent, pleconaril, is active against picornaviruses. XLA patients, however, are apparently immune to the Epstein-Barr virus (EBV), as they lack mature B cells (and so HLA co-receptors) needed for the viral infection. Patients with XLA are also more likely to have a history of septic arthritis.
It is not known if XLA patients are able to generate an allergic reaction, as they lack functional IgE antibodies.There is no special hazard for XLA patients in dealing with pets or outdoor activities. Unlike in other primary immunodeficiencies XLA patients are at no greater risk for developing autoimmune illnesses.
Agammaglobulinemia (XLA) is similar to the primary immunodeficiency disorder Hypogammaglobulinemia (CVID), and their clinical conditions and treatment are almost identical. However, while XLA is a congenital disorder, with known genetic causes, CVID may occur in adulthood and its causes are not yet understood.
XLA was also historically mistaken as Severe Combined Immunodeficiency (SCID), a much more severe immune deficiency ("Bubble boys").A strain of laboratory mouse, XID, is used to study XLA. These mice have a mutated version of the mouse Btk gene, and exhibit a similar, yet milder, immune deficiency as in XLA.
Secondary immunodeficiencies, also known as acquired immunodeficiencies, can result from various immunosuppressive agents, for example, malnutrition, aging, particular medications (e.g., chemotherapy, disease-modifying antirheumatic drugs, immunosuppressive drugs after organ transplants, glucocorticoids) and environmental toxins like mercury and other heavy metals, pesticides and petrochemicals like styrene, dichlorobenzene, xylene, and ethylphenol. For medications, the term "immunosuppression" generally refers to both beneficial and potential adverse effects of decreasing the function of the immune system, while the term "immunodeficiency" generally refers solely to the adverse effect of increased risk for infection.
Many specific diseases directly or indirectly cause immunosuppression. This includes many types of cancer, particularly those of the bone marrow and blood cells (leukemia, lymphoma, multiple myeloma), and certain chronic infections. Immunodeficiency is also the hallmark of acquired immunodeficiency syndrome (AIDS), caused by the human immunodeficiency virus (HIV). HIV directly infects a small number of T helper cells, and also impairs other immune system responses indirectly.
Various hormonal and metabolic disorders can also result in immune deficiency including anemia, hypothyroidism, diabetes and hypoglycemia.
Smoking, alcoholism and drug abuse also depress immune response.
XMEN patients have splenomegaly, chronic Epstein Barr Virus (EBV) infection, and are developmentally normal. They have an increased susceptibility for developing EBV+ lymphoma. Additionally, XMEN patients have excessive infections consistent with the underlying immunodeficiency. These infections included recurrent otitis media, sinusitis, viral pneumonia, diarrhea, upper respiratory infections, epiglottitis, and pertussis. Although autoimmune symptoms do not feature prominently in XMEN autoimmune cytopenias were observed in two unrelated patients.
In the figure to the left, major features are present in all XMEN patients, while minor features are found only in some.
Because the CD18 gene has been cloned and sequenced, this disorder is a potential candidate for gene therapy.
The most commonly quoted figure for the prevalence of SCID is around 1 in 100,000 births, although this is regarded by some to be an underestimate of the true prevalence; some estimates predict that the prevalence rate is as high as 1 in 50,000 live births. A figure of about 1 in 65,000 live births has been reported for Australia.
Due to the genetic nature of SCID, a higher prevalence is found in areas and cultures among which there is a higher rate of consanguineous mating. A study conducted upon Moroccan SCID patients reported that inbreeding parenting was observed in 75% of the families.
Recent studies indicate that one in every 2,500 children in the Navajo population inherit severe combined immunodeficiency. This condition is a significant cause of illness and death among Navajo children. Ongoing research reveals a similar genetic pattern among the related Apache people.
There are many lymphoproliferative disorders that are associated with organ transplantation and immunosuppressant therapies. In most reported cases, these cause B cell lymphoproliferative disorders; however, some T cell variations have been described. The T cell variations are usually caused by the prolonged use of T cell suppressant drugs, such as sirolimus, tacrolimus, or ciclosporin.
Prevalence varies by population, but is on the order of 1 in 100 to 1 in 1000 people, making it relatively common for a genetic disease.
SigAD occurs in 1 of 39 to 57 patients with celiac disease. This is much higher than the prevalence of selective IgA deficiency in the general population. It is also significantly more common in those with type 1 diabetes.
It is more common in males than in females.
Activated PI3K delta syndrome is a primary immunodeficiency disease caused by activating gain of function mutations in the PIK3CD gene. Which encodes the p110δ catalytic subunit of PI3Kδ, APDS-2 (PASLI-R1) is caused by exon-skipping mutations in PIK3R1 which encodes for the regulatory subunit p85α. APDS and APDS-2 affected individuals present with similar symptoms, which include increased susceptibility to airway infections, bronchiectasis and lymphoproliferation.
SCID mice were and still are used in disease, vaccine, and transplant research; especially as animal models for testing the safety of new vaccines or therapeutic agents in people with weakened immune system recessive gene with clinical signs similar to the human condition, also affects the Arabian horse. In horses, the condition remains a fatal disease, as the animal inevitably succumbs to an opportunistic infection within the first four to six months of life. However, carriers, who themselves are not affected by the disease, can be detected with a DNA test. Thus careful breeding practices can avoid the risk of an affected foal being produced.
Another animal with well-characterized SCID pathology is the dog. There are two known forms, an X-linked SCID in Basset Hounds that has similar ontology to X-SCID in humans, and an autosomal recessive form seen in one line of Jack Russell Terriers that is similar to SCID in Arabian horses and mice.
SCID mice also serve as a useful animal model in the study of the human immune system and its interactions with disease, infections, and cancer.
Leukocyte adhesion deficiency-1 (LAD1) is a rare and often fatal genetic disorder in humans.
X-linked agammaglobulinemia (XLA) is a rare genetic disorder discovered in 1952 that affects the body's ability to fight infection. As the form of agammaglobulinemia that is X-linked, it is much more common in males. In people with XLA, the white blood cell formation process does not generate mature B cells, which manifests as a complete or near-complete lack of proteins called gamma globulins, including antibodies, in their bloodstream. B cells are part of the immune system and normally manufacture antibodies (also called immunoglobulins), which defend the body from infections by sustaining a humoral immunity response. Patients with untreated XLA are prone to develop serious and even fatal infections. A mutation occurs at the Bruton's tyrosine kinase (Btk) gene that leads to a severe block in B cell development (at the pre-B cell to immature B cell stage) and a reduced immunoglobulin production in the serum. Btk is particularly responsible for mediating B cell development and maturation through a signaling effect on the B cell receptor BCR. Patients typically present in early childhood with recurrent infections, in particular with extracellular, encapsulated bacteria. XLA is deemed to have a relatively low incidence of disease, with an occurrence rate of approximately 1 in 200,000 live births and a frequency of about 1 in 100,000 male newborns. It has no ethnic predisposition. XLA is treated by infusion of human antibody. Treatment with pooled gamma globulin cannot restore a functional population of B cells, but it is sufficient to reduce the severity and number of infections due to the passive immunity granted by the exogenous antibodies.
XLA is caused by a mutation on the X chromosome of a single gene identified in 1993 which produces an enzyme known as Bruton's tyrosine kinase, or Btk. XLA was first characterized by Dr. Ogden Bruton in a ground-breaking research paper published in 1952 describing a boy unable to develop immunities to common childhood diseases and infections. It is the first known immune deficiency, and is classified with other inherited (genetic) defects of the immune system, known as primary immunodeficiency disorders.
In terms of genetics, activated PI3K Delta Syndrome is autosomal dominant, a mutation in phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoform is the reason for this condition (located at chromosome 1p36.)