Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
This condition is very rare; approximately 600 cases have been reported worldwide. In most parts of the world, only 1% to 2% of all infants with high phenylalanine levels have this disorder. In Taiwan, about 30% of newborns with elevated levels of phenylalanine have a deficiency of THB.
Infant mortality is high for patients diagnosed with early onset; mortality can occur within less than 2 months, while children diagnosed with late-onset syndrome seem to have higher rates of survival. Patients suffering from a complete lesion of mut0 have not only the poorest outcome of those suffering from methylaonyl-CoA mutase deficiency, but also of all individuals suffering from any form of methylmalonic acidemia.
Whether MTHFR deficiency has any effect at all on all-cause mortality is unclear. One Dutch study showed that the MTHFR mutation was more prevalent in younger individuals (36% relative to 30%), and found that elderly men with MTHFR had an elevated mortality rate, attributable to cancer. Among women, however, no difference in life expectancy was seen. More recently, however, a meta-analysis has shown that overall cancer rates are barely increased with an odds ratio of 1.07, which suggests that an impact on mortality from cancer is small or zero.
This disorder, epidemiologically speaking, is thought to affect approximately 1 in 50,000 newborns according to Jethva, et al. While in the U.S. state of California there seems to be a ratio of 1 in 35,000.
Since biotin is in many foods at low concentrations, deficiency is rare except in locations where malnourishment is very common. Pregnancy, however, alters biotin catabolism and despite a regular biotin intake, half of the pregnant women in the U.S. are marginally biotin deficient.
2,4 Dienoyl-CoA reductase deficiency is an inborn error of metabolism resulting in defective fatty acid oxidation caused by a deficiency of the enzyme 2,4 Dienoyl-CoA reductase. Lysine degradation is also affected in this disorder leading to hyperlysinemia. The disorder is inherited in an autosomal recessive manner, meaning an individual must inherit mutations in "NADK2," located at 5p13.2 from both of their parents. NADK2 encodes the mitochondrial NAD kinase. A defect in this enzyme leads to deficient mitochondrial nicotinamide adenine dinucleotide phosphate levels. 2,4 Dienoyl-CoA reductase, but also lysine degradation are performed by NADP-dependent oxidoreductases explaining how NADK2 deficiency can lead to multiple enzyme defects.
2,4-Dienoyl-CoA reductase deficiency was initially described in 1990 based on a single case of a black female who presented with persistent hypotonia. Laboratory investigations revealed elevated lysine, low levels of carnitine and an abnormal acylcarnitine profile in urine and blood. The abnormal acylcarnitine species was eventually identified as 2-trans,4-cis-decadienoylcarnitine, an intermediate of linoleic acid metabolism. The index case died of respiratory failure at four months of age. Postmortem enzyme analysis on liver and muscle samples revealed decreased 2,4-dienoyl-CoA reductase activity when compared to normal controls. A second case with failure to thrive, developmental delay, lactic acidosis and severe encephalopathy was reported in 2014.
2,4-Dienoyl-CoA reductase deficiency was included as a secondary condition in the American College of Medical Genetics Recommended Uniform Panel for newborn screening. Its status as a secondary condition means there was not enough evidence of benefit to include it as a primary target, but it may be detected during the screening process or as part of a differential diagnosis when detecting conditions included as primary target. Despite its inclusion in newborn screening programs in several states for a number of years, no cases have been identified via neonatal screening.
A 2001 study followed up on 50 patients. Of these 38% died in childhood while the rest suffered from problems with morbidity.
Babies with this disorder are usually healthy at birth. The signs and symptoms may not appear until later in infancy or childhood and can include poor feeding and growth (failure to thrive), a weakened and enlarged heart (dilated cardiomyopathy), seizures, and low numbers of red blood cells (anemia). Another feature of this disorder may be very low blood levels of carnitine (a natural substance that helps convert certain foods into energy).
Isobutyryl-CoA dehydrogenase deficiency may be worsened by long periods without food (fasting) or infections that increase the body's demand for energy. Some individuals with gene mutations that can cause isobutyryl-CoA dehydrogenase deficiency may never experience any signs and symptoms of the disorder.
Short-chain acyl-coenzyme A dehydrogenase deficiency (SCADD), also called ACADS deficiency and SCAD deficiency, is an autosomal recessive fatty acid oxidation disorder which affects enzymes required to break down a certain group of fats called short chain fatty acids.
The prevalence of 677T homozygozity varies with race. 18-21% of Hispanics and Southern Mediterranean populations have this variant, as do 6-14% of North American Caucasians and <2% of Blacks living outside of Africa.
The prevalence of the 1298C mutation is lower, at 4-12% for most tested populations.
A study in 2000 had identified only 24 cases of severe MTHFR deficiency (from nonsense mutations) across the whole world.
Tetrahydrobiopterin deficiency can be caused by a deficiency of the enzyme dihydrobiopterin reductase (DHPR), whose activity is needed to replenish quinonoid-dihydrobiopterin back into its tetrahydrobiopterin form. Those with this deficiency may produce sufficient levels of the enzyme phenylalanine hydroxylase (PAH) but, since tetrahydrobiopterin is a cofactor for PAH activity, deficient dihydrobiopterin reductase renders any PAH produced unable to use phenylalanine to produce tyrosine. Tetrahydrobiopterin is a cofactor in the production of L-DOPA from tyrosine and 5-hydroxy-L-tryptophan from tryptophan, which must be supplemented as treatment in addition to the supplements for classical PKU.
Other underlying causes of tetrahydrobiopterin deficiency are:
- 6-Pyruvoyl tetrahydropterin synthase (PTPS) deficiency
- Autosomal recessive guanosine triphosphate cyclohydrolase I (GTPCH) deficiency
- Pterin-4alpha-carbinolamine dehydratase (PCD) deficiency
Isobutyryl-coenzyme A dehydrogenase deficiency, commonly known as IBD deficiency, is a rare metabolic disorder in which the body is unable to process certain amino acids properly.
People with this disorder have inadequate levels of an enzyme that helps break down the amino acid valine, resulting in a buildup of valine in the urine, a symptom called valinuria.
Succinyl-CoA:3-oxoacid CoA transferase deficiency (SCOT deficiency) is an inborn error of ketone body utilization. Succinyl-CoA:3-oxoacid CoA transferase catalyzes the transfer of coenzyme A from succinyl-coenzyme A to acetoacetate. It can be caused by mutation in the "OXCT1" gene.
First described in 1972, more than 30 people have been reported in the medical literature with this inborn error of metabolism. They experience attacks of ketoacidosis during illness, and even when unwell may have elevated levels of ketone bodies in blood and urine (ketonemia and ketonuria, respectively). Not all people with SCOT deficiency have persistent ketonemia and ketonuria, particularly those with milder defects of enzyme activity.
In the United States, biotin supplements are readily available without a prescription in amounts ranging from 1,000 to 10,000 micrograms (30 micrograms is identified as Adequate Intake).
Mutations in the "HADH" gene lead to inadequate levels of an enzyme called 3-hydroxyacyl-coenzyme A dehydrogenase. Medium-chain and short-chain fatty acids cannot be metabolized and processed properly without sufficient levels of this enzyme. As a result, these fatty acids are not converted to energy, which can lead to characteristic features of this disorder, such as lethargy and hypoglycemia. Medium-chain and short-chain fatty acids or partially metabolized fatty acids may build up in tissues and damage the liver, heart, and muscles, causing more serious complications.
This condition is inherited in an autosomal recessive pattern, which means two copies of the gene in each cell are altered. Most often, the parents of an individual with an autosomal recessive disorder each carry one copy of the altered gene but do not show signs and symptoms of the disorder.
Mutations in the "HADHA" gene lead to inadequate levels of an enzyme called long-chain 3-hydroxyacyl-coenzyme A (CoA) dehydrogenase, which is part of a protein complex known as mitochondrial trifunctional protein. Long-chain fatty acids from food and body fat cannot be metabolized and processed without sufficient levels of this enzyme. As a result, these fatty acids are not converted to energy, which can lead to characteristic features of this disorder, such as lethargy and hypoglycemia. Long-chain fatty acids or partially metabolized fatty acids may build up in tissues and damage the liver, heart, retina, and muscles, causing more serious complications.
D-Bifunctional protein deficiency (officially called 17β-hydroxysteroid dehydrogenase IV deficiency) is an autosomal recessive peroxisomal fatty acid oxidation disorder. Peroxisomal disorders are usually caused by a combination of peroxisomal assembly defects or by deficiencies of specific peroxisomal enzymes. The peroxisome is an organelle in the cell similar to the lysosome that functions to detoxify the cell. Peroxisomes contain many different enzymes, such as catalase, and their main function is to neutralize free radicals and detoxify drugs, such as alcohol. For this reason peroxisomes are ubiquitous in the liver and kidney. D-BP deficiency is the most severe peroxisomal disorder, often resembling Zellweger syndrome.
Characteristics of the disorder include neonatal hypotonia and seizures, occurring mostly within the first month of life, as well as visual and hearing impairment. Other symptoms include severe craniofacial disfiguration, psychomotor delay, and neuronal migration defects. Most onsets of the disorder begin in the gestational weeks of development and most affected individuals die within the first two years of life.
A triplex tetra-primer ARMS-PCR method was developed for the simultaneous detection of C677T and A1298C polymorphisms with the A66G MTRR polymorphism in a single PCR reaction.
Methylmalonyl-CoA mutase is a mitochondrial homodimer apoenzyme (EC. 5. 4.99.2) that focuses on the catalysis of methylmalonyl CoA to succinyl CoA. The enzyme is bound to adenosylcobalamin, a hormonal derivative of vitamin B12 in order to function. Methylmalonyl-CoA mutase deficiency is caused by genetic defect in the MUT gene responsible for encoding the enzyme. Deficiency in this enzyme accounts for 60% of the cases of methylmalonic acidemia.
The term fatty acid oxidation disorder (FAOD) is sometimes used, especially when there is an emphasis on the oxidation of the fatty acid.
In addition to the fetal complications, they can also cause complications for the mother during pregnancy.
Examples include:
- trifunctional protein deficiency
- MCADD, LCHADD, and VLCADD
This condition is sometimes mistaken for fatty acid and ketogenesis disorders such as Medium-chain acyl-coenzyme A dehydrogenase deficiency (MCAD), other long-chain fatty acid oxidation disorders such as Carnitine palmitoyltransferase II deficiency (CPT-II) and Reye syndrome.
Persons with the genotype for PKU are unaffected in utero, because maternal circulation prevents buildup of [phe]. After birth, PKU in newborns is treated by a special diet with highly restricted phenylalanine content. Persons with genetic predisposition to PKU have normal mental development on this diet. Previously, it was thought safe to withdraw from the diet in the late teens or early twenties, after the central nervous system was fully developed; recent studies suggest some degree of relapse, and a continued phenylalanine-restricted diet is now recommended.
PKU or hyperphenylalaninemia may also occur in persons without the PKU genotype. If the mother has the PKU genotype but has been treated so as to be asymptomatic, high levels of [phe] in the maternal blood circulation may affect the non-PKU fetus during gestation. Mothers successfully treated for PKU are advised to return to the [phe]-restricted diet during pregnancy.
A small subset of patients with hyperphenylalaninemia shows an appropriate reduction in plasma phenylalanine levels with dietary restriction of this amino acid; however, these patients still develop progressive neurologic symptoms and seizures and usually die within the first 2 years of life ("malignant" hyperphenylalaninemia). These infants exhibit normal phenylalanine hydroxylase (PAH) enzymatic activity but have a deficiency in dihydropteridine reductase (DHPR), an enzyme required for the regeneration of tetrahydrobiopterin (THB or BH), a cofactor of PAH.
Less frequently, DHPR activity is normal but a defect in the biosynthesis of THB exists. In either case, dietary therapy corrects the hyperphenylalaninemia. However, THB is also a cofactor for two other hydroxylation reactions required in the syntheses of neurotransmitters in the brain: the hydroxylation of tryptophan to 5-hydroxytryptophan and of tyrosine to L-dopa. It has been suggested that the resulting deficit in the CNS neurotransmitter activity is, at least in part, responsible for the neurologic manifestations and eventual death of these patients.
Methylene tetrahydrofolate reductase (MTHFR) is the rate-limiting enzyme in the methyl cycle, and it is encoded by the "MTHFR" gene. Methylenetetrahydrofolate reductase catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a cosubstrate for homocysteine remethylation to methionine. Natural variation in this gene is common in healthy people. Although some variants have been reported to influence susceptibility to occlusive vascular disease, neural tube defects, Alzheimer's disease and other forms of dementia, colon cancer, and acute leukemia, findings from small early studies have not been reproduced. Some mutations in this gene are associated with methylenetetrahydrofolate reductase deficiency.
Mutations in the "CPT1A" gene cause carnitine palmitoyltransferase I deficiency by producing a defective version of an enzyme called carnitine palmitoyltransferase I. Without this enzyme, long-chain fatty acids from food and fats stored in the body cannot be transported into mitochondria to be broken down and processed. As a result, excessive levels of long-chain fatty acids may more rapidly build up in tissues, damaging the liver, heart and/or brain.
This condition has an autosomal recessive inheritance pattern, which means the defective gene is located on an autosome, and two copies of the gene - one from each parent - must be inherited to be affected by the disorder. The parents of a child with an autosomal recessive disorder are carriers of one copy of the defective gene, but are usually not affected by the disorder.
The prevalence of mutations associated with this condition reach 68% to 81% in certain arctic coastal populations, suggesting that the condition had some adaptive value in those habitats at some time.
Coenzyme Q10 deficiency is a deficiency of Coenzyme Q10.
It can be associated with "COQ2", "APTX", "PDSS2", "PDSS1", "CABC1", and "COQ9".
Some forms may be more treatable than other mitochondrial diseases.