Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The clinical course of BVVL can vary from one patient to another. There have been cases with progressive deterioration, deterioration followed by periods of stabilization, and deterioration with abrupt periods of increasing severity.
The syndrome has previously been considered to have a high mortality rate but the initial response of most patients to the Riboflavin protocol are very encouraging and seem to indicate a significantly improved life expectancy could be achievable. There are three documented cases of BVVL where the patient died within the first five years of the disease. On the contrary, most patients have survived more than 10 years after the onset of their first symptom, and several cases have survived 20–30 years after the onset of their first symptom.
Families with multiple cases of BVVL and, more generally, multiple cases of infantile progressive bulbar palsy can show variability in age of disease onset and survival. Dipti and Childs described such a situation in which a family had five children that had Infantile PBP. In this family, three siblings showed sensorineural deafness and other symptoms of BVVL at an older age. The other two siblings showed symptoms of Fazio-Londe disease and died before the age of two.
The disorder has been associated with various mutations in the SLC52A2 and "SLC52A3" genes. This gene is thought to be involved in transport of riboflavin.
BVVL is allelic and phenotypically similar to Fazio–Londe disease and likewise is inherited in an autosomal recessive manner.
The aging process has three distinct components: physiologic degeneration, extrinsic damage (nosocusis), and intrinsic damage (sociocusis). These factors are superimposed on a genetic substrate, and may be overshadowed by general age-related susceptibility to diseases and disorders.
Hearing loss is only weakly correlated with age. In preindustrial and non-industrial societies, persons retain their hearing into old age. In the Framingham cohort study, only 10% of the variability of hearing with age could be explained by age-related physiologic deterioration. Within family groups, heredity factors were dominant; across family groups, other, presumably sociocusis and nosocusis factors were dominant.
- Heredity: factors like early aging of the cochlea and susceptibility of the cochlea for drug insults are genetically determined.
- Oxidative stress
- General inflammatory conditions
Nosocusis factors are those that can cause hearing loss, which are not noise-based and separate from pure presbycusis. They may include:
- Ototoxic drugs: Ingestion of ototoxic drugs like aspirin may hasten the process of presbycusis.
- vascular degeneration
- Atherosclerosis: May diminish vascularity of the cochlea, thereby reducing its oxygen supply.
- Dietary habits: Increased intake of saturated fat may accelerate atherosclerotic changes in old age.
- Smoking: Is postulated to accentuate atherosclerotic changes in blood vessels aggravating presbycusis.
- Diabetes: May cause vasculitis and endothelial proliferation in the blood vessels of the cochlea, thereby reducing its blood supply.
- Hypertension: causes potent vascular changes, like reduction in blood supply to the cochlea, thereby aggravating presbycusis.
However, a recent study found that diabetes, atherosclerosis and hypertension had no correlation to presbycusis, suggesting that these are nosocusis (acquired hearing loss) factors, not intrinsic factors.
In terms of frequency, is estimated at 2 per 100,000, it has identified in different regions of the world. Some clusters of certain types of autosomal dominant cerebellar ataxia reach a prevalence of 5 per 100,000.
A 2006 study followed 223 patients for a number of years. Of these, 15 died, with a median age of 65 years. The authors tentatively concluded that this is in line with a previously reported estimate of a shortened life expectancy of 10-15 years (12 in their data).
Retinitis pigmentosa is the leading cause of inherited blindness, with approximately 1/4,000 individuals experiencing the non-syndromic form of their disease within their lifetime. It is estimated that 1.5 million people worldwide are currently affected. Early onset RP occurs within the first few years of life and is typically associated with syndromic disease forms, while late onset RP emerges from early to mid-adulthood.
Autosomal dominant and recessive forms of retinitis pigmentosa affect both male and female populations equally; however, the less frequent X-linked form of the disease affects male recipients of the X-linked mutation, while females usually remain unaffected carriers of the RP trait. The X-linked forms of the disease are considered severe, and typically lead to complete blindness during later stages. In rare occasions, a dominant form of the X-linked gene mutation will affect both males and females equally.
Due to the genetic inheritance patterns of RP, many isolate populations exhibit higher disease frequencies or increased prevalence of a specific RP mutation. Pre-existing or emerging mutations that contribute to rod photoreceptor degeneration in retinitis pigmentosa are passed down through familial lines; thus, allowing certain RP cases to be concentrated to specific geographical regions with an ancestral history of the disease. Several hereditary studies have been performed to determine the varying prevalence rates in Maine (USA), Birmingham (England), Switzerland (affects 1/7000), Denmark (affects 1/2500), and Norway. Navajo Indians display an elevated rate of RP inheritance as well, which is estimated as affecting 1 in 1878 individuals. Despite the increased frequency of RP within specific familial lines, the disease is considered non-discriminatory and tends to equally affect all world populations.
Migraine itself is a very common disorder, occurring in 15–20% of the population. Hemiplegic migraine, be it familial or spontaneous, is less prevalent, 0.01% prevalence according to one report. Women are three times more likely to be affected than males.
In terms of a cure there is currently none available, however for the disease to manifest itself, it requires mutant gene expression. Manipulating the use of protein homoestasis regulators can be therapuetic agents, or a treatment to try and correct an altered function that makes up the pathology is one current idea put forth by Bushart, et al. There is some evidence that for SCA1 and two other polyQ disorders that the pathology can be reversed after the disease is underway. There is no effective treatments that could alter the progression of this disease, therefore care is given, like occupational and physical therapy for gait dysfunction and speech therapy.
Mirhosseini–Holmes–Walton syndrome is a syndrome which involves retinal degeneration, cataract, microcephaly, and mental retardation. It was first characterized in 1972.
There is evidence that this syndrome has a different mutation in the same gene as Cohen syndrome.
"See the equivalent section in the main migraine article."
People with FHM are encouraged to avoid activities that may trigger their attacks. Minor head trauma is a common attack precipitant, so FHM sufferers should avoid contact sports. Acetazolamide or standard drugs are often used to treat attacks, though those leading to vasoconstriction should be avoided due to the risk of stroke.
RP may be:
(1) Non-syndromic, that is, it occurs alone, without any other clinical findings,
(2) Syndromic, with other neurosensory disorders, developmental abnormalities, or complex clinical findings, or
(3) Secondary to other systemic diseases.
- RP combined with deafness (congenital or progressive) is called Usher syndrome.
- Alport's syndrome is associated with RP and an abnormal glomerular-basement membrane leading nephrotic syndrome and inherited as X-linked dominant.
- RP combined with ophthalmoplegia, dysphagia, ataxia, and cardiac conduction defects is seen in the mitochondrial DNA disorder Kearns-Sayre syndrome (also known as Ragged Red Fiber Myopathy)
- RP combined with retardation, peripheral neuropathy, acanthotic (spiked) RBCs, ataxia, steatorrhea, is absence of VLDL is seen in abetalipoproteinemia.
- RP is seen clinically in association with several other rare genetic disorders (including muscular dystrophy and chronic granulomatous disease) as part of McLeod syndrome. This is an X-linked recessive phenotype characterized by a complete absence of XK cell surface proteins, and therefore markedly reduced expression of all Kell red blood cell antigens. For transfusion purposes these patients are considered completely incompatible with all normal and K0/K0 donors.
- RP associated with hypogonadism, and developmental delay with an autosomal recessive inheritance pattern is seen with Bardet-Biedl syndrome
Other conditions include neurosyphilis, toxoplasmosis and Refsum's disease.
The incidence and prevalence of PMD are unknown, and no studies have yet investigated its prevalence or incidence. However, it is generally agreed that PMD is a very rare condition. Some uncertainty regarding the incidence of PMD may be attributed to its confusion with keratoconus. PMD is not linked to race or age, although most cases present early in life, between 20 and 40 years of age. While PMD is usually considered to affect men and women equally, some studies suggest that it may affect men more frequently.
Several diseases have been observed in patients with PMD. However, no causal relationships have been established between any of the associated diseases and the pathogenesis of PMD. Such diseases include: chronic open-angle glaucoma, retinitis pigmentosa, retinal lattice degeneration, scleroderma, kerato-conjunctivitis, eczema, and hyperthyroidism.
Choroideremia (; CHM) is a rare, X-linked recessive form of hereditary retinal degeneration that affects roughly 1 in 50,000 males. The disease causes a gradual loss of vision, starting with childhood night blindness, followed by peripheral vision loss, and progressing to loss of central vision later in life. Progression continues throughout the individual's life, but both the rate of change and the degree of visual loss are variable among those affected, even within the same family.
Choroideremia is caused by a loss-of-function mutation in the "CHM" gene which encodes Rab escort protein 1 (REP1), a protein involved in lipid modification of Rab proteins. While the complete mechanism of disease is not fully understood, the lack of a functional protein in the retina results in cell death and the gradual deterioration of the choroid, retinal pigment epithelium (RPE), and retinal photoreceptor cells.
As of 2017, there is no treatment for choroideremia; however, retinal gene therapy clinical trials have demonstrated a possible treatment.
Distal hereditary motor neuronopathies (distal HMN, dHMN), sometimes also called distal hereditary motor neuropathies, are a genetically and clinically heterogeneous group of motor neuron diseases that result from genetic mutations in various genes and are characterized by degeneration and loss of motor neuron cells in the anterior horn of the spinal cord and subsequent muscle atrophy.
Although they can hardly be distinguished from hereditary motor and sensory neuropathies on the clinical level, dHMNs are considered a separate class of disorders.
There is no known treatment for FTS, as the cause is not yet known. There are conflicting reports on whether the paralysis is reversible; some sources claim that moving an elephant away from the area in which it contracted the condition will allow it to recover, while others claim that damage to the trunk is irreversible.
In some extreme cases, wildlife managers have killed affected elephants for humane reasons.
In regards to the diagnosis of spinal and bulbar muscular atrophy, the "AR Xq12" gene is the focus. Many mutations are reported and identified as missense/nonsense, that can be identified with 99.9% accuracy. Test for this gene in the majority of affected patients yields the diagnosis.
While choroideremia is an ideal candidate for gene therapy there are other potential therapies that could restore vision after it has been lost later in life. Foremost of these is stem cell therapy. A clinical trial published in 2014 found that a subretinal injection of human embryonic stem cells in patients with age-related macular degeneration and Stargardt disease was safe and improved vision in most patients. Out of 18 patients, vision improved in 10, improved or remained the same in 7, and decreased in 1 patient, while no improvement was seen in the untreated eyes. The study found "no evidence of adverse proliferation, rejection, or serious ocular or systemic safety issues related to the transplanted tissue." A 2015 study used CRISPR/Cas9 to repair mutations in patient-derived induced pluripotent stem cells that cause X-linked retinitis pigmentosa. This study suggests that a patient's own repaired cells could be used for therapy, reducing the risk of immune rejection and ethical issues that come with the use of embryonic stem cells.
Dissociated sensory loss is a pattern of neurological damage caused by a lesion to a single tract in the spinal cord which involves "selective" loss of fine touch and proprioception "without" loss of pain and temperature, or vice versa.
Understanding the mechanisms behind these selective lesions requires a brief discussion of the anatomy involved.
Loss of pain and temperature are due to damage to the lateral spinothalamic tracts, which cross the central part of the cord close to the level where they enter it and travel up the spinal column on the opposite side to the one they innervate (i.e. they "ascend contralaterally"). Note that a lesion of the lateral spinothalamic tract at a given level will not result in sensory loss for the dermatome of the same level; this is due to the fibers of the tract of Lissauer which transmit the neuron one or two levels above the affected segment (thus bypassing the segmental lesion on the contralateral side).
Loss of fine touch and proprioception are due to damage to the dorsal columns, which do not cross the cord until the brainstem, and so travel up the column on the same side to the one they innervate (i.e. they "ascend ipsilaterally").
This means that a lesion of the dorsal columns will cause loss of touch and proprioception below the lesion and on the same side as it, while a lesion of the spinothalamic tracts will cause loss of pain and temperature below the lesion and on the opposite side to it.
Dissociated sensory loss always suggests a focal lesion within the spinal cord or brainstem.
The location of cord lesions affects presentation—for instance, a central lesion (such as that of syringomyelia) will knock out second order neurons of the spinothalamic tract as they cross the centre of the cord, and will cause loss of pain and temperature without loss of fine touch or proprioception.
Other causes of dissociated sensory loss include:
- Diabetes mellitus
- Syringomyelia
- Brown-Séquard syndrome
- Lateral medullary syndrome aka Wallenberg's syndrome
- Anterior spinal artery thrombosis
- Tangier disease
- Subacute combined degeneration
- Multiple sclerosis
- Tabes dorsalis
- Friedreich's ataxia (or other spinocerebellar degeneration)
In season 6 of House MD in the episode 12 titled Remorse, House diagnoses his patient with Wilson's Disease in absence of Kayser-Fleischer rings by removing the nail polish to note the blue nails.
Terrien marginal degeneration is a noninflammatory, unilateral or asymmetrically bilateral, slowly progressive thinning of the peripheral corneal stroma.
The cause of Terrien marginal degeneration is unknown, its prevalence is roughly equal between males and females, and it usually occurs in the second or third decade of life.
CCCA tends to present itself in the 20s and progresses over 20–30 years. One should consider this diagnosis in African Americans with what appears to be a female-pattern hair loss.
In 1993, A. E. Hardnig proposed to classify hereditary motor neuropathies into seven groups based on age at onset, mode of inheritance, and presence of additional features. This initial classification has since been widely adopted and expanded and currently looks as follows:
Note: Acronym "HMN" is also used interchangeably with "DHMN".
Spectacles or RGP contact lenses can be used to manage the astigmatism. when the condition worsens, surgical correction may be required.
The severe pain of HNA can be controlled with an anti-inflammatory drug such as prednisone, although it is unknown whether these anti-inflammatory drugs actually slow or stop the nerve degeneration process.
Nerve regeneration after an episode is normal, and in less severe cases a full recovery of the nerves and muscles can be expected. However, in a severe case permanent nerve damage may occur.