Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The course of HPS has been mild in rare instances of the disorder, however, the general prognosis is still considered to be poor.
The disease can cause dysfunctions of the lungs, intestine, kidneys, and heart. The major complication of most forms of the disorder is pulmonary fibrosis, which typically exhibits in patients ages 40–50 years. This is a fatal complication seen in many forms of HPS, and is the usual cause of death from the disorder. HPS patients who develop pulmonary fibrosis typically have type 1 or type 4.
HPS is one of the rare lung diseases currently being studied by The Rare Lung Diseases Consortium (RLDC). The RLDC is part of the Rare Diseases Clinical Research Network (RDCRN), an initiative of the Office of Rare Diseases Research (ORDR), of the National Center for Advancing Translational Sciences (NCATS). The RLDC is dedicated to developing new diagnostics and therapeutics for patients with rare lung diseases, through collaboration between the NIH, patient organizations and clinical investigators.
Bloom syndrome is an extremely rare disorder in most populations and the frequency of the disease has not been measured in most populations. However, the disorder is relatively more common amongst people of Central and Eastern European (Ashkenazi) Jewish background. Approximately 1 in 48,000 Ashkenazi Jews are affected by Bloom syndrome, who account for about one-third of affected individuals worldwide.
An extremely rare disease of which only a few isolated cases are known.
Research has revealed that a number of genetic disorders, not previously thought to be related, may indeed be related as to their root cause. Joubert syndrome is one such disease. It is a member of an emerging class of diseases called ciliopathies.
The underlying cause of the ciliopathies may be a dysfunctional molecular mechanism in the primary cilia structures of the cell, organelles which are present in many cellular types throughout the human body. The cilia defects adversely affect "numerous critical developmental signaling pathways" essential to cellular development and thus offer a plausible hypothesis for the often multi-symptom nature of a large set of syndromes and diseases.
Currently recognized ciliopathies include Joubert syndrome, primary ciliary dyskinesia (also known as Kartagener Syndrome), Bardet-Biedl syndrome, polycystic kidney disease and polycystic liver disease, nephronophthisis, Alstrom syndrome, Meckel-Gruber syndrome and some forms of retinal degeneration.
Joubert syndrome type 2 is disproportionately frequent among people of Jewish descent.
HID syndrome is also known as ichthyosis hystrix, Rheydt type after the German city of Rheydt near Düsseldorf where it was first discovered. Symptoms are bilateral hearing loss and spiky hyperkeratotic masses which cover the whole body though the palms and soles are less badly affected. It can be differentiated from KID syndrome which also has symptoms of deafness and ichthyosis by the different distribution of hyperkeratosis. It is an autosomal dominant condition caused by a mutation to the GJB2 gene (the same gene affected by KID syndrome).
In a sample of 19 children, a 1997 study found that 3 died before the age of 3, and 2 never learned to walk. The children had various levels of delayed development with developmental quotients from 60 to 85.
The long-term prognosis of Costeff syndrome is unknown, though it appears to have no effect on life expectancy at least up to the fourth decade of life. However, as mentioned previously, movement problems can often be severe enough to confine individuals to a wheelchair at an early age, and both visual acuity and spasticity tend to worsen over time.
Familial dysautonomia is seen almost exclusively in Ashkenazi Jews and is inherited in an autosomal recessive fashion. Both parents must be carriers in order for a child to be affected. The carrier frequency in Jewish individuals of Eastern European (Ashkenazi) ancestry is about 1/30, while the carrier frequency in non-Jewish individuals is unknown. If both parents are carriers, there is a one in four, or 25%, chance with each pregnancy for an affected child. Genetic counseling and genetic testing is recommended for families who may be carriers of familial dysautonomia.
Worldwide, there have been approximately 600 diagnoses recorded since discovery of the disease, with approximately 350 of them still living.
Bloom syndrome (often abbreviated as BS in literature), also known as Bloom-Torre-Machacek syndrome, is a rare autosomal recessive disorder characterized by short stature, predisposition to the development of cancer and genomic instability. BS is caused by mutations in the BLM gene leading to mutated DNA helicase protein formation. Cells from a person with Bloom syndrome exhibit a striking genomic instability that includes excessive crossovers between homologous chromosomes and sister chromatid exchanges (SCEs). The condition was discovered and first described by New York dermatologist Dr. David Bloom in 1954.
alterations in lipid and
carbohydrate metabolism, a triplet-repeat disorder
(myotonic dystrophy) and an idiopathic disorder
Some segmental progeroid syndromes, such as Werner syndrome (WS), Bloom syndrome (BS), Rothmund-Thomson syndromes (RTS) and combined xeroderma pigmentosa-Cockayne syndrome (XP-CS), are associated with an increased risk of developing cancer in the affected individual; two exceptions are Hutchinson–Gilford progeria (HGPS) and Cockayne syndrome.
Because this genetic anomaly is genetically linked, genetic counseling may be the only way to decrease occurrences of Cherubism. The lack of severe symptoms in the parents may be the cause of failure in recognizing the disorder. The optimal time to be tested for mutations is prior to having children. The disorder results from a genetic mutation, and this gene has been found to spontaneously mutate. Therefore, there may be no prevention techniques available.
First described in 1989, Costeff syndrome has been reported almost exclusively in individuals of Iraqi Jewish origin with only two exceptions, one of whom was a Turkish Kurdish, with the other being of Indian descent. Within the Iraqi Jewish population, the carrier frequency of the founder mutation is about 1/10, with the prevalence of Costeff syndrome itself estimated at anywhere between 1 in 400 and 1 in 10,000.
Cherubism is autosomal dominantly linked, meaning the displayed phenotype is determined by the dominant allele while the normal allele is recessive. One copy of the dominant allele is enough to cause the disorder. Because the condition was found to be dominant the disorder phenotype tends to be seen in every generation at some level of severity. Therefore, afflicted fathers or mothers of children with Cherubism pass the phenotype to both daughters and sons. Cherubism has also been found from the random mutation of a gene in an individual having no family history of the condition. However it is not well understood why males tend to express the disease more frequently. Children with Cherubism vary in severity in their maxilla and mandible bony lesions. The disease is expressed at a rate of 80 to 100% of all affected. Studies of multiple generations of families with the gene found that all boys developed Cherubism, but 30-50% of girls show no symptoms.
The cause of Cherubism is believed to be from a mutation of gene of SH3BP2. Cherubism has also been found combined with other genetic disorders including Noonan syndrome, Ramon syndrome, and Fragile X syndrome. Mutations of the SH3BP2 gene are only reported in 75% of Cherubism cases. The mutation of the SH3BP2 gene is believed to increase production of over active proteins from this gene. The SH3BP2 gene is found on the smaller arm of chromosome 4 at position 16.3. The SH3BP2 protein is involved with chemical signaling to immune system cells known as macrophages and B cells.
The effects of SH3BP2 mutations are still under study, but researchers believe that the abnormal protein disrupts critical signaling pathways in cells associated with the maintenance of bone tissue and in some immune system cells. The overactive protein likely causes inflammation in the jaw bones and triggers the production of osteoclasts, which are cells that break down bone tissue during bone remodeling. Osteoclasts also sense the increased inflammation of the mandible and maxilla and are further activated to break down bone structures. Bone loss and inflammation lead to increased fibrous tissue and cyst growth. An excess of these bone-eating cells contributes to the destruction of bone in the upper and lower jaws. A combination of bone loss and inflammation likely underlies the cyst-like growths characteristic of Cherubism.
The outlook for patients with FD depends on the particular diagnostic category. Patients with chronic, progressive, generalized dysautonomia in the setting of central nervous system degeneration have a generally poor long-term prognosis. Death can occur from pneumonia, acute respiratory failure, or sudden cardiopulmonary arrest in such patients.
Parents and patients should generally be educated regarding daily eye care and early warning signs of corneal problems as well as the use of punctal cautery. This education has resulted in decreased corneal scarring and need for more aggressive surgical measures such as tarsorrhaphy, conjunctival flaps, and corneal transplants.
Mucolipidosis type IV is severely under-diagnosed. It is often misdiagnosed as cerebral palsy. In the Ashkenazi Jewish population there are two severe mutations with a higher carrier frequency of 1:90 to 1:100.
Usher syndrome, also known as Hallgren syndrome, Usher-Hallgren syndrome, retinitis pigmentosa-dysacusis syndrome, or dystrophia retinae dysacusis syndrome, is an extremely rare genetic disorder caused by a mutation in any one of at least 11 genes resulting in a combination of hearing loss and visual impairment. It is a leading cause of deafblindness and is at present incurable.
Usher syndrome is classed into three subtypes according to onset and severity of symptoms. All three subtypes are caused by mutations in genes involved in the function of the inner ear and retina. These mutations are inherited in an autosomal recessive pattern.
People with Laron syndrome have strikingly low rates of cancer and diabetes, although they appear to be at increased risk of accidental death due to their stature.
The rate of progression varies significantly from person to person.
There is not good data on outcomes; it appears that APBD likely leads to earlier death, but people with APBD can live many years after diagnosis with relatively good quality of life.
Since Usher syndrome results from the loss of a gene, gene therapy that adds the proper protein back ("gene replacement") may alleviate it, provided the added protein becomes functional. Recent studies of mouse models have shown one form of the disease—that associated with a mutation in myosin VIIa—can be alleviated by replacing the mutant gene using a lentivirus. However, some of the mutated genes associated with Usher syndrome encode very large proteins—most notably, the "USH2A" and "GPR98" proteins, which have roughly 6000 amino-acid residues. Gene replacement therapy for such large proteins may be difficult.
Mucolipidosis type IV (ML IV or ML4) is an autosomal recessive lysosomal storage disorder. Individuals with the disorder have many symptoms including delayed psychomotor development and various ocular aberrations. The disorder is caused by mutations in the MCOLN1 gene, which encodes a non-selective cation channel, mucolipin1. These mutations disrupt cellular functions and lead to a neurodevelopmental disorder through an unknown mechanism. Researchers dispute the physiological role of the protein product and which ion it transports.
Prognosis for recovery following administration of succinylcholine is excellent when medical support includes close monitoring and respiratory support measures.
In nonmedical settings in which subjects with pseudocholinesterase deficiency are exposed to cocaine, sudden cardiac death can occur.
Many patients eventually develop acute myelogenous leukemia (AML). Older patients are extremely likely to develop head and neck, esophageal, gastrointestinal, vulvar and anal cancers. Patients who have had a successful bone marrow transplant and, thus, are cured of the blood problem associated with FA still must have regular examinations to watch for signs of cancer. Many patients do not reach adulthood.
The overarching medical challenge that Fanconi patients face is a failure of their bone marrow to produce blood cells. In addition, Fanconi patients normally are born with a variety of birth defects. A good number of Fanconi patients have kidney problems, trouble with their eyes, developmental retardation and other serious defects, such as microcephaly (small head).
The main complication resulting from pseudocholinesterase deficiency is the possibility of respiratory failure secondary to succinylcholine or mivacurium-induced neuromuscular paralysis.
Individuals with pseudocholinesterase deficiency also may be at increased risk of toxic reactions, including sudden cardiac death, associated with recreational use of cocaine.