Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
That MMA can have disastrous effects on the nervous system has been long reported; however, the mechanism by which this occurs has never been determined. Published on June 15th 2015, research performed on the effects of methylmalonic acid on neurons isolated from fetal rats in an in vitro setting using a control group of neurons treated with an alternate acid of similar pH. These tests have suggested that methylmalonic acid causes decreases in cellular size and increase in the rate of cellular apoptosis in a concentration dependent manner with more extreme effects being seen at higher concentrations. Furthermore, micro-array analysis of these treated neurons have also suggested that on a epigenetic-level methylmalonic acid alters the transcription rate of 564 genes, notably including those involved in the apoptosis, p53, and MAPK signaling pathways.
The life expectancy of patients with homocystinuria is reduced only if untreated. It is known that before the age of 30, almost one quarter of patients die as a result of thrombotic complications (e.g., heart attack).
The inherited forms of methylmalonic acidemia cause defects in the metabolic pathway where methylmalonyl-coenzyme A (CoA) is converted into succinyl-CoA by the enzyme methylmalonyl-CoA mutase.
Vitamin B is also needed for the conversion of methylmalonyl-CoA to Succinyl-CoA. Mutations leading to defects in vitamin B metabolism or in its transport frequently result in the development of methylmalonic acidemia.
This disorder has an autosomal recessive inheritance pattern, which means the defective gene is located on an autosome, and two copies of the gene—one from each parent—must be inherited to be affected by the disorder. The parents of a child with an autosomal recessive disorder are carriers of one copy of the defective gene, but are usually not affected by the disorder.
Depending on ethnicity and geography, prevalence has been estimated to be between 1 in 40,000 and 1 in 300,000; based on these estimates the disease may be underdiagnosed. Jewish infants of Iraqi or Iranian origin appear to be most at risk based on a study of a community in Los Angeles in which there was a prevalence of 1 in 4200.
It is caused by the deficiency of the enzyme cystathionine beta synthase, and the deficiency of folic acid, vitamin B12 and pyridoxine (vitamin B6), or mutations of related enzymes.
Some children with LAL-D have had an experimental therapy called hematopoietic stem cell transplantation (HSCT), also known as bone marrow transplant, to try to prevent the disease from getting worse. Data are sparse but there is a known high risk of serious complications including death, graft-versus-host disease.
Galactose-1-phosphate uridylyltransferase deficiency, also called galactosemia type 1, classic galactosemia or GALT deficiency, is the most common type of galactosemia, an inborn error of galactose metabolism, caused by a deficiency of the enzyme galactose-1-phosphate uridylyltransferase. It is an autosomal recessive metabolic disorder that can cause liver disease and death if untreated. Treatment of galactosemia is most successful if initiated early and includes dietary restriction of lactose intake. Because early intervention is key, galactosemia is included in newborn screening programs in many areas. On initial screening, which often involves measuring the concentration of galactose in blood, classic galactosemia may be indistinguishable from other inborn errors of galactose metabolism, including galactokinase deficiency and galactose epimerase deficiency. Further analysis of metabolites and enzyme activities are needed to identify the specific metabolic error.
Lactose is a disaccharide consisting of glucose and galactose. After the ingestion of lactose, most commonly from breast milk for an infant or cow milk and any milk from an animal,the enzyme lactase hydrolyzes the sugar into its monosaccharide constituents, glucose and galactose. In the first step of galactose metabolism, galactose is converted to galactose-1-phosphate (Gal-1-P) by the enzyme galactokinase. Gal-1-P is converted to uridine diphosphate galactose (UDP-galactose) by the enzyme galactose-1-phosphate uridylyltransferase, with UDP-glucose acting as the UDP donor. UDP-galactose can then be converted to lactose, by the enzyme lactose synthase or to UDP-glucose by UDP-galactose epimerase (GALE).
In classic galactosemia, galactose-1-phosphate uridylyltransferase activity is reduced or absent; leading to an accumulation of the precursors, galactose, galactitol, and Gal-1-P. The elevation of precursors can be used to differentiate GALT deficiency from galactokinase deficiency, as Gal-1-P is typically not elevated in galactokinase deficiency. Gal-1-P is assumed as to be a toxic agent, since the inhibition of the Galactokinase prevents toxicity in disease's models.
Transaldolase deficiency is a disease characterised by abnormally low levels of the Transaldolase enzyme. It is a metabolic enzyme involved in the pentose phosphate pathway. It is caused by mutation in the transaldolase gene (TALDO1). It was first described by Verhoeven et al. in 2001.
Transaldolase deficiency is recognized as a rare inherited pleiotropic metabolic disorder first recognized and described in 2001 that is autosomal recessive. There have been only a few cases that have been noted, as of 2012 there have been 9 patients recognized with this disease and one fetus.
Treatment for glycogen storage disease type III may involve a high-protein diet, in order to facilitate gluconeogenesis. Additionally the individual may need:
- IV glucose (if oral route is inadvisable)
- Nutritional specialist
- Vitamin D (for osteoporosis/secondary complication)
- Hepatic transplant (if complication occurs)
Glycogen storage disease type III is an autosomal recessive metabolic disorder and inborn error of metabolism (specifically of carbohydrates) characterized by a deficiency in glycogen debranching enzymes. It is also known as Cori's disease in honor of the 1947 Nobel laureates Carl Cori and Gerty Cori. Other names include Forbes disease in honor of clinician Gilbert Burnett Forbes (1915–2003), an American Physician who further described the features of the disorder, or limit dextrinosis, due to the limit dextrin-like structures in cytosol. Limit dextrin is the remaining polymer produced after hydrolysis of glycogen. Without glycogen debranching enzymes to further convert these branched glycogen polymers to glucose, limit dextrinosis abnormally accumulates in the cytoplasm.
Glycogen is a molecule the body uses to store carbohydrate energy. Symptoms of GSD-III are caused by a deficiency of the enzyme amylo-1,6 glucosidase, or debrancher enzyme. This causes excess amounts of an abnormal glycogen to be deposited in the liver, muscles and, in some cases, the heart.
D-Bifunctional protein deficiency (officially called 17β-hydroxysteroid dehydrogenase IV deficiency) is an autosomal recessive peroxisomal fatty acid oxidation disorder. Peroxisomal disorders are usually caused by a combination of peroxisomal assembly defects or by deficiencies of specific peroxisomal enzymes. The peroxisome is an organelle in the cell similar to the lysosome that functions to detoxify the cell. Peroxisomes contain many different enzymes, such as catalase, and their main function is to neutralize free radicals and detoxify drugs, such as alcohol. For this reason peroxisomes are ubiquitous in the liver and kidney. D-BP deficiency is the most severe peroxisomal disorder, often resembling Zellweger syndrome.
Characteristics of the disorder include neonatal hypotonia and seizures, occurring mostly within the first month of life, as well as visual and hearing impairment. Other symptoms include severe craniofacial disfiguration, psychomotor delay, and neuronal migration defects. Most onsets of the disorder begin in the gestational weeks of development and most affected individuals die within the first two years of life.
Although rickets and osteomalacia are now rare in Britain, osteomalacia outbreaks in some immigrant communities included women with seemingly adequate daylight outdoor exposure wearing typical Western clothing. Having darker skin and reduced exposure to sunshine did not produce rickets unless the diet deviated from a Western omnivore pattern characterized by high intakes of meat, fish, and eggs, and low intakes of high-extraction cereals. In sunny countries where rickets occurs among older toddlers and children, vitamin D deficiency has been attributed to low dietary calcium intakes. This is characteristic of cereal-based diets with limited access to dairy products. Rickets was formerly a major public health problem among the US population; in Denver, where ultraviolet rays are about 20% stronger than at sea level on the same latitude, almost two-thirds of 500 children had mild rickets in the late 1920s. An increase in the proportion of animal protein in the 20th-century American diet coupled with increased consumption of milk fortified with relatively small quantities of vitamin D coincided with a dramatic decline in the number of rickets cases. One study of children in a hospital in Uganda however showed no significant difference in vitamin D levels of malnourished children compared to non-malnourished children. Because both groups were at risk due to darker skin pigmentation, both groups had vitamin D deficiency. Nutritional status did not appear to play a role in this study.
Elderly people have a higher risk of having a vitamin D deficiency due to a combination of several risk factors, including: decreased sunlight exposure, decreased intake of vitamin D in the diet, and decreased skin thickness which leads to further decreased absorption of vitamin D from sunlight.
The most commonly seen form of PDCD is caused by mutations in the X-linked E1 alpha gene and is approximately equally prevalent in both males and females. However, a greater severity of symptoms tends to affect males more often than heterozygous females. This can be explained by x-inactivation, as females carry one normal and one mutant gene. Cells with a normal allele active can metabolize the lactic acid that is released by the PDH deficient cells. They cannot, however, supply ATP to these cells and, therefore, phenotype depends largely on the nature/severity of the mutation.
Elevated levels of homocysteine have been associated with a number of disease states.
Pyruvate dehydrogenase deficiency (also known as pyruvate dehydrogenase complex deficiency or PDCD) is one of the most common neurodegenerative disorders associated with abnormal mitochondrial metabolism. PDCD is an X-linked disease that shows heterogeneous characteristics in both clinical presentation and biochemical abnormality. The pyruvate dehydrogenase complex (PDC) is a multi-enzyme complex that plays a vital role as a key regulatory step in the central pathways of energy metabolism in the mitochondria.
A vitamin deficiency can cause a disease or syndrome known as an avitaminosis or hypovitaminosis. This usually refers to a long-term deficiency of a vitamin. When caused by inadequate nutrition it can be classed as a "primary deficiency", and when due to an underlying disorder such as malabsorption it can be classed as a "secondary deficiency". An underlying disorder may be metabolic as in a defect converting tryptophan to niacin. It can also be the result of lifestyle choices including smoking and alcohol consumption.
Examples are vitamin A deficiency, folate deficiency, scurvy, vitamin D deficiency, vitamin E deficiency, and vitamin K deficiency. In the medical literature, any of these may also be called by names on the pattern of "hypovitaminosis" or "avitaminosis" + "[letter of vitamin]", for example, hypovitaminosis A, hypovitaminosis C, hypovitaminosis D.
Conversely hypervitaminosis is the syndrome of symptoms caused by over-retention of fat-soluble vitamins in the body.
- Vitamin A deficiency can cause keratomalacia.
- Thiamine (vitamin B1) deficiency causes beriberi and Wernicke–Korsakoff syndrome.
- Riboflavin (vitamin B2) deficiency causes ariboflavinosis.
- Niacin (vitamin B3) deficiency causes pellagra.
- Pantothenic acid (vitamin B5) deficiency causes chronic paresthesia.
- Vitamin B6
- Biotin (vitamin B7) deficiency negatively affects fertility and hair/skin growth. Deficiency can be caused by poor diet or genetic factors (such as mutations in the BTD gene, see multiple carboxylase deficiency).
- Folate (vitamin B9) deficiency is associated with numerous health problems. Fortification of certain foods with folate has drastically reduced the incidence of neural tube defects in countries where such fortification takes place. Deficiency can result from poor diet or genetic factors (such as mutations in the MTHFR gene that lead to compromised folate metabolism).
- Vitamin B12 (cobalamin) deficiency can lead to pernicious anemia, megaloblastic anemia, subacute combined degeneration of spinal cord, and methylmalonic acidemia among other conditions.
- Vitamin C (ascorbic acid) short-term deficiency can lead to weakness, weight loss and general aches and pains. Longer-term depletion may affect the connective tissue. Persistent vitamin C deficiency leads to scurvy.
- Vitamin D (cholecalciferol) deficiency is a known cause of rickets, and has been linked to numerous health problems.
- Vitamin E deficiency causes nerve problems due to poor conduction of electrical impulses along nerves due to changes in nerve membrane structure and function.
- Vitamin K (phylloquinone or menaquinone) deficiency causes impaired coagulation and has also been implicated in osteoporosis
Type A Niemann–Pick disease (about 85% of cases) has an extremely poor prognosis, with most cases being fatal by the age of 18 months. Type B (adult onset) and type C (mutation affecting a different molecule) Niemann–Pick diseases have a better prognosis.
Abetalipoproteinemia affects the absorption of dietary fats, cholesterol, and certain vitamins. People affected by this disorder are not able to make certain lipoproteins, which are molecules that consist of proteins combined with cholesterol and particular fats called triglycerides. This leads to a multiple vitamin deficiency, affecting the fat-soluble vitamin A, vitamin D, vitamin E, and vitamin K. However, many of the observed effects are due to vitamin E deficiency in particular.
The signs and symptoms of abetalipoproteinemia appear in the first few months of life (because pancreatic lipase is not active in this period). They can include failure to gain weight and grow at the expected rate (failure to thrive); diarrhea; abnormal spiny red blood cells (acanthocytosis); and fatty, foul-smelling stools (steatorrhea). The stool may contain large chunks of fat and/or blood. Other features of this disorder may develop later in childhood and often impair the function of the nervous system. They can include poor muscle coordination, difficulty with balance and movement (ataxia), and progressive degeneration of the retina (the light-sensitive layer in the posterior eye) that can progress to near-blindness (due to deficiency of vitamin A, retinol). Adults in their thirties or forties may have increasing difficulty with balance and walking. Many of the signs and symptoms of abetalipoproteinemia result from a severe vitamin deficiency, especially vitamin E deficiency, which typically results in eye problems with degeneration of the spinocerebellar and dorsal column tracts.
Abetalipoproteinemia is a disorder that interferes with the normal absorption of fat and fat-soluble vitamins from food. It is caused by a mutation in microsomal triglyceride transfer protein resulting in deficiencies in the apolipoproteins B-48 and B-100, which are used in the synthesis and exportation of chylomicrons and VLDL respectively. It is not to be confused with familial dysbetalipoproteinemia.
It is a rare autosomal recessive disorder.
The prognosis of this condition in childhood usually has a stable outcome, whereas in neonatal is almost always fatal, according to Jurecka, et al.
Pregnancy also poses as another high risk factor for vitamin D deficiency. The status levels of vitamin D during the last stages of pregnancy directly impact the new borns first initial months of life. Babies who are exclusively breastfed with minimal exposure to sunlight or supplementation can be at greater risk of vitamin D deficiency,as human milk has minimal vitamin D present. Recommendations for infants of the age 0–12 months are set at 5 ug/day, to assist in preventing rickets in young babies. 80% of dark skinned and or veiled women in Melbourne were found to have serum levels lower than 22.5 nmol/L considering them to be within moderate ranges of vitamin D deficiency.
Lysosomal storage diseases (LSDs; ) are a group of about 50 rare inherited metabolic disorders that result from defects in lysosomal function. Lysosomes are sacs of enzymes within cells that digest large molecules and pass the fragments on to other parts of the cell for recycling. This process requires several critical enzymes. If one of these enzymes is defective, because of a mutation, the large molecules accumulate within the cell, eventually killing it.
Lysosomal storage disorders are caused by lysosomal dysfunction usually as a consequence of deficiency of a single enzyme required for the metabolism of lipids, glycoproteins (sugar-containing proteins), or so-called mucopolysaccharides. Individually, LSDs occur with incidences of less than 1:100,000; however, as a group, the incidence is about 1:5,000 - 1:10,000. Most of these disorders are autosomal recessively inherited such as Niemann–Pick disease, type C, but a few are X-linked recessively inherited, such as Fabry disease and Hunter syndrome (MPS II).
The lysosome is commonly referred to as the cell's recycling center because it processes unwanted material into substances that the cell can use. Lysosomes break down this unwanted matter by enzymes, highly specialized proteins essential for survival. Lysosomal disorders are usually triggered when a particular enzyme exists in too small an amount or is missing altogether. When this happens, substances accumulate in the cell. In other words, when the lysosome does not function normally, excess products destined for breakdown and recycling are stored in the cell.
Like other genetic disorders, individuals inherit lysosomal storage diseases from their parents. Although each disorder results from different gene mutations that translate into a deficiency in enzyme activity, they all share a common biochemical characteristic – all lysosomal disorders originate from an abnormal accumulation of substances inside the lysosome.
LSDs affect mostly children and they often die at a young and unpredictable age, many within a few months or years of birth. Many other children die of this disease following years of suffering from various symptoms of their particular disorder.