Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Campomelic dysplasia has a reported incidence of 0.05-0.09 per 10000 live births.
In nearly 95% of the cases, death occurs in the neonatal period due to respiratory distress, generally related to small chest size or insufficient development of the trachea and other upper airway structures.
Among survivors of CMD, the skeletal malformations change over time to include worsening scoliosis or kyphosis resulting in decreased trunk size relative to the limb length. Neurological damage is also often seen including mental retardation and deafness. Even among survivors of the prenatal period, CMD patients have shortened life spans due to lifelong respiratory issues. Those patients with ambiguous genitalia or sex reversal at birth, of course, maintain that state, and are either sterile or have reduced fertility.
While the definitive presentation of the disease is a patient having bowed lower limbs and sex reversal in 46,XY males, there are other clinical criteria that can be used, absent these characteristics, to make the diagnosis. Patients may present with underdeveloped shoulder blades, shortened and angulated lower limbs, a vertically oriented and narrow pelvis, an enlarged head, an undersized jaw, cleft palate, flat nasal bridge, low set ears, club feet, dislocated hips, 11 pairs of ribs instead of 12, or bone abnormalities in the neck and spine. Respiratory distress can be caused by an underdeveloped trachea which collapses on inhalation or by insufficient rib cage development.
Ullrich congenital muscular dystrophy is a form of congenital muscular dystrophy.It is associated with variants of type VI collagen, it is commonly associated with muscle weakness and respiratory problems, though cardiac issues are not associated with this type of CMD. It is named after Otto Ullrich, who is also known for the Ullrich-Turner syndrome.
New research resources have become available for the NM community, such as the CMDIR (registry) and the CMD-TR (biorepository). These two resources connect families and individuals interested in participating in research with the scientists that aim to treat or cure NM. Some research on NM seeks to better understand the molecular effects the gene mutations have on muscle cells and the rest of the body and to observe any connections NM may have to other diseases and health complications.
In terms of the genetics of Ullrich congenital muscular dystrophy, there are mutations in the genes COL6A1, COL6A2, and COL6A3. This sub-type of muscular dystrophy is autosomal recessive in nature.
COL6A1 plays an important part in maintaining the human body's integrity of various tissues. Alpha 1 subunit of type VI collagen is the encoded protein.
The genetics of congenital muscular dystrophy are autosomal recessive which means two copies of an abnormal gene must be present
for the disease or trait to happen. In the case of collagen VI-deficient, it is autosomal dominant, which means a child could inherit the disease from only one copy of a gene present in only one parent.
The prevalence for congenital muscular dystrophy seems to be between 2.6-4.5 in 10,000 according to Reed, 2009. MDCIA, for example is due to a mutation in the LAMA-2 gene and is involved with the 6q2 chromosome.
Nemaline Myopathy is caused by mutations in one of at least 10 different genes. Nemaline myopathy is a clinically and genetically heterogeneous disorder and both autosomal dominant and autosomal recessive forms can occur. Diagnosis is made based upon clinical signs such as muscle weakness, absent or low deep tendon reflexes (hyporeflexia), and a high-arched palate, along with electron-dense aggregates, called nemaline rods, being observed at the microscopic level within muscle fibers. Genetic confirmation through identification of a known genetic mutation in the patient is also an important component of diagnosis.
The two most common gene mutations causing nemaline myopathy are found on "NEB" or "ACTA1". Mutations of the NEB gene usually result in symptoms present at birth or beginning in early childhood. This mutation results in about 50% of affected nemaline myopathy patients. The most common inheritance pathway for those with mutations in "NEB" is autosomal recessive in which each parent carries one mutated copy along with one normal functioning copy of the gene, and they pass the mutated copy to their offspring. In some cases, occasionally with "ACTA1" mutations, NM can be caused by an inheritance pattern of autosomal dominance. This mutation results in about 15 to 25 percent of the NM cases. The reason this is lower is because mutations resulting in the "ACTA1" gene would usually not be passed down from parents because this type of mutation happens spontaneously in the egg or sperm. When the condition is heritable, each pregnancy with the same partners has the same risk of passing the mutated genes to offspring. New mutations (de novo) can also occur causing NM and de novo mutations have been most often found to occur in the "ACTA1" gene. The risk of all cases of nemaline myopathy is the same in males and females.
The physical capabilities of a given person with NM do not correlate well either with genotype or with muscle pathology as observed in the biopsy.
Congenital muscular dystrophies are autosomal recessively-inherited muscle diseases. They are a group of heterogeneous disorders characterized by muscle weakness which is present at birth and the different changes on muscle biopsy that ranges from myopathic to overtly dystrophic due to the age at which the biopsy takes place.
TMD does not obviously run in families like a genetic disease. It has been suggested that a genetic predisposition for developing TMD (and chronic pain syndromes generally) could exist. This has been postulated to be explained by variations of the gene which codes for the enzyme catechol-O-methyl transferase (COMT) which may produce 3 different phenotypes with regards pain sensitivity. COMT (together with monoamine oxidase) is involved in breaking down catecholamines (e.g. dopamine, epinephrine, and norepinephrine). The variation of the COMT gene which produces less of this enzyme is associated with a high sensitivity to pain. Females with this variation, are at 2–3 times greater risk of developing TMD than females without this variant. However this theory is controversial since there is conflicting evidence.
Occlusal factors as an etiologic factor in TMD is a controversial topic. Abnormalities of occlusion (problems with the bite) are often blamed for TMD but there is no evidence that these factors are involved. Occlusal abnormalities are incredibly common, and most people with occlusal abnormalities do not have TMD. Although occlusal features may affect observed electrical activity in masticatory muscles, there are no statistically significant differences in the number of occlusal abnormalities in people with TMD and in people without TMD. There is also no evidence for a causal link between orthodontic treatment and TMD. The modern, mainstream view is that the vast majority of people with TMD, occlusal factors are not related. Theories of occlusal factors in TMD are largely of historical interest. A causal relationship between occlusal factors and TMD was championed by Ramfjord in the 1960s. A small minority of dentists continue to prescribe occlusal adjustments in the belief that this will prevent or treat TMD despite the existence of systematic reviews of the subject which state that there is no evidence for such practices, and the vast majority of opinion being that no irreversible treatment should be carried out in TMD (see Occlusal adjustment).