Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The common routes of transmission for the disease-causing bacteria are fecal-oral, person-to-person sexual contact, ingestion of contaminated food (generally unpasteurized (raw) milk and undercooked or poorly handled poultry), and waterborne (i.e., through contaminated drinking water). Contact with contaminated poultry, livestock, or household pets, especially puppies, can also cause disease.
Animals farmed for meat are the main source of campylobacteriosis. A study published in PLoS Genetics (September 26, 2008) by researchers from Lancashire, England, and Chicago, Illinois, found that 97 percent of campylobacteriosis cases sampled in Lancashire were caused by bacteria typically found in chicken and livestock. In 57 percent of cases, the bacteria could be traced to chicken, and in 35 percent to cattle. Wild animal and environmental sources were accountable for just three percent of disease.
The infectious dose is 1000–10,000 bacteria (although ten to five hundred bacteria can be enough to infect humans). "Campylobacter" species are sensitive to hydrochloric acid in the stomach, and acid reduction treatment can reduce the amount of needed to cause disease.
Exposure to bacteria is often more common during travelling, and therefore campylobacteriosis is a common form of travelers' diarrhea.
To date, the precise causative factor has not been verified, and the disease has been attributed by various sources to viruses, parasites, bacteria, use of antibiotics and sulfonamides, and heavy metal poisoning. Other possible causes include peracute salmonellosis, clostridial enterocolitis, and endotoxemia. "Clostridium difficile" toxins isolated in the horse have a genotype like the current human "epidemic strain", which is associated with human "C. difficile"-associated disease of greater than historical severity. "C. difficile" can cause pseudomembranous colitis in humans, and in hospitalized patients who develop it, fulminant "C. difficile" colitis is a significant and increasing cause of death.
Horses under stress appear to be more susceptible to developing colitis X. Disease onset is often closely associated with surgery or transport. Excess protein and lack of cellulose content in the diet (a diet heavy on grain and lacking adequate hay or similar roughage) is thought to be the trigger for the multiplication of clostridial organisms. A similar condition may be seen after administration of tetracycline or lincomycin to horses. These factors may be one reason the condition often develops in race horses, having been responsible for the deaths of the Thoroughbred filly Landaluce,
the Quarter Horse stallion Lightning Bar,
and is one theory for the sudden death of Kentucky Derby winner Swale.
The link to stress suggests the condition may be brought on by changes in the microflora of the cecum and colon that lower the number of anaerobic bacteria, increase the number of Gram-negative enteric bacteria, and decrease anaerobic fermentation of soluble carbohydrates, resulting in damage to the cecal and colonic mucosa and allowing increased absorption of endotoxins from the lumen of the gut.
The causative agent may be "Clostridium perfringens", type A, but the bacteria are recoverable only in the preliminary stages of the disease.
The suspect toxin could also be a form of "Clostridium difficile". In a 2009 study at the University of Arizona, "C. difficile" toxins A and B were detected, large numbers of "C. difficile" were isolated, and genetic characterization revealed them to be North American pulsed-field gel electrophoresis type 1, polymerase chain reaction ribotype 027, and toxinotype III. Genes for the binary toxin were present, and toxin negative-regulator tcdC contained an 18-bp deletion. The individual animal studied in this case was diagnosed as having peracute typhlocolitis, with lesions and history typical of those attributed to colitis X.
Use of antibiotics may also be associated with some forms of colitis-X. In humans, "C. difficile" is the most serious cause of antibiotic-associated diarrhea, often a result of eradication of the normal gut flora by antibiotics. In one equine study, colitis was induced after pretreatment with clindamycin and lincomycin, followed by intestinal content from horses which had died from naturally occurring idiopathic colitis. (A classic adverse effect of clindamycin in humans is "C. difficile"-associated diarrhea.) In the experiment, the treated horses died. After necropsy, "Clostridium cadaveris" was present, and is proposed as another possible causative agent in some cases of fatal colitis.
The World Health Organization recommends the following:
- Food should be properly cooked and hot when served.
- Consume only pasteurized or boiled milk and milk products, never raw milk products.
- Make sure that ice is from safe water.
- If you are not sure of the safety of drinking water, boil it, or disinfect it with chemical disinfectant.
- Wash hands thoroughly and frequently with soap, especially after using the toilet and after contact with pets and farm animals.
- Wash fruits and vegetables thoroughly, especially if they are to be eaten raw. Peel fruits and vegetables whenever possible.
- Food handlers, professionals and at home, should observe hygienic rules during food preparation.
- Professional food handlers should immediately report to their employer any fever, diarrhea, vomiting or visible infected skin lesions.
In Germany, 90% of cases of infectious enteritis are caused by four pathogens, Norovirus, Rotavirus, "Campylobacter" and "Salmonella". Other common causes of infectious enteritis include bacteria such as "Shigella" and "E. coli," as well as viruses such as adenovirus, astrovirus and calicivirus. Other less common pathogens include "Bacillus cereus, Clostridium perfringens, Clostridium difficile" and "Staphylococcus aureus".
"Campylobacter jejuni" is one of the most common sources of infectious enteritis, and the most common bacterial pathogen found in 2 year old and smaller children with diarrhoea. It has been linked to consumption of contaminated water and food, most commonly poultry and milk. The disease tends to be less severe in developing countries, due to the constant exposure which people have with the antigen in the environment, leading to early development of antibodies.
Rotavirus is responsible for infecting 140 million people and causing 1 million deaths each year, mostly in children younger than 5 years. This makes it the most common cause of severe childhood diarrhoea and diarrhea-related deaths in the world. It selectively targets mature enterocytes in the small intestine, causing malabsorption, as well as inducing secretion of water. It has also been observed to cause villus ischemia, and increase intestinal motility. The net result of these changes is induced diarrhoea.
Enteritis necroticans is an often fatal illness, caused by β-toxin of "Clostridium perfringens". This causes inflammation and segments of necrosis throughout the gastrointestinal tract. It is most common in developing countries, however has also been documented in post-World War II Germany. Risk factors for enteritis necroticans include decreased trypsin activity, which prevent intestinal degradation of the toxin, and reduced intestinal motility, which increases likelihood of toxin accumulation.
Staphylococcal enteritis is an inflammation that is usually caused by eating or drinking substances contaminated with staph enterotoxin. The toxin, not the bacterium, settles in the small intestine and causes inflammation and swelling. This in turn can cause abdominal pain, cramping, dehydration, diarrhea and fever.
"Staphylococcus aureus" is a Gram-positive, facultative anaerobe, coccal (round shaped) bacteria that appears in grape-like clusters that can thrive in high salt and low water activity habitats. "S. aureus" bacteria can live on the skin which is one of the primary modes of transmission. "S. aureus" can cause a range of illnesses from minor skin infections to Staphylococcus aureus food poisoning enteritis. Since humans are the primary source, cross-contamination is the most common way the microorganism is introduced into foods. Foods at high risks are those prepared in large quantities.
Staphylococcus aureus is a true food poisoning organism. It produces a heat stable enterotoxin when allowed to grow for several hours in foods such as cream-filled baked goods, poultry meat, gravies, eggs, meat salads, puddings and vegetables. It is important to note that the toxins may be present in dangerous amounts in foods that have no signs of spoilage, such as a bad smell, any off color, odor, or textural or flavor change.
Enteritis is the inflammation of the small intestine. It is generally caused by eating or drinking substances that are contaminated with bacteria or viruses. The bacterium and/or toxin settles in the small intestine and cause inflammation and swelling. This in turn can cause abdominal pain, cramping, diarrhea, fever, and dehydration. There are other types of enteritis, the types include: bacterial gastroenteritis, "Campylobacter" enteritis, "E. coli" enteritis, radiation enteritis, "Salmonella" enteritis and "Shigella" enteritis.
Colitis X, equine colitis X or peracute toxemic colitis is a catchall term for various fatal forms of acute or peracute colitis found in horses, but particularly a fulminant colitis where clinical signs include sudden onset of severe diarrhea, abdominal pain, shock, and dehydration. Death is common, with 90% to 100% mortality, usually in less than 24 hours. The causative factor may be "Clostridium difficile", but it also may be caused by other intestinal pathogens. Horses under stress appear to be more susceptible to developing colitis X, and like the condition pseudomembranous colitis in humans, there also is an association with prior antibiotic use. Immediate and aggressive treatment can sometimes save the horse, but even in such cases, 75% mortality is considered a best-case scenario.
Crohn's disease – also known as regional enteritis, it can occur along any surface of the gastrointestinal tract. In 40% of cases it is limited to the small intestine.
Coeliac disease – caused by an autoimmune reaction to gluten by genetically predisposed individuals.
Eosinophilic enteropathy – a condition where eosinophils build up in the gastrointestinal tract and blood vessels, leading to polyp formation, necrosis, inflammation and ulcers. It is most commonly seen in patients with a history of atopy, however is overall relatively uncommon.
Enterocolitis or coloenteritis is an inflammation of the digestive tract, involving enteritis of the small intestine and colitis of the colon. It may be caused by various infections, with bacteria, viruses, fungi, parasites, or other causes. Common clinical manifestations of enterocolitis are frequent diarrheal defecations, with or without nausea, vomiting, abdominal pain, fever, chills, alteration of general condition. General manifestations are given by the dissemination of the infectious agent or its toxins throughout the body, or – most frequently – by significant losses of water and minerals, the consequence of diarrhea and vomiting.
Among the causal agents of acute enterocolitis are:
- bacteria: "Salmonella", "Shigella", "Escherichia coli", "Campylobacter" etc.;
- viruses: enteroviruses, rotaviruses, Norwalk virus, adenoviruses;
- fungi: candidiasis, especially in immunosuppressed patients or who have previously received prolonged antibiotic treatment;
- parasites: "Giardia lamblia" (with high frequency of infestation in the population, but not always with clinical manifestations), "Balantidium coli", "Blastocystis homnis", "Cryptosporidium" (diarrhea in people with immunosuppression), "Entamoeba histolytica" (produces the amebian dysentery, common in tropical areas).
Staphylococcal enteritis may be avoided by using proper hygiene and sanitation with food preparation. This includes thoroughly cooking all meats. If food is to be stored longer than two hours, keep hot foods hot (over 140 °F) and cold foods cold (40 °F or under). Ensure to refrigerate leftovers promptly and store cooked food in a wide, shallow container and refrigerate as soon as possible. Sanitation is very important. Keep kitchens and food-serving areas clean and sanitized. Finally, as most staphylococcal food poisoning are the result of food handling, hand washing is critical. Food handlers should use hand sanitizers with alcohol or thorough hand washing with soap and water.
Tips for hand washing:
1. Wash hands with warm, soapy water before and after handling raw foods.
2. Always wash your hands after using the bathroom, after changing a baby's diaper, after touching pets or other animals, and after sneezing or coughing
3. Properly dress or glove.
Specific types of enterocolitis include:
- necrotizing enterocolitis (most common in premature infants)
- pseudomembranous enterocolitis (also called "Pseudomembranous colitis")
All the factors collectively causing CNE are generally only present in the hinterlands of New Guinea and parts of Africa, Latin America, and Asia. These factors include protein deprivation (causing inadequate synthesis of trypsin protease (an enzyme), to which the toxin is very sensitive), poor food hygiene, episodic meat feasting, staple diets containing trypsin inhibitors (sweet potatoes), and infection by "Ascaris" parasites which secrete a trypsin inhibitor. In New Guinea (origin of the term "pigbel"), the disease is usually spread through contaminated meat (especially pork) and perhaps by peanuts. (CNE was also diagnosed in post World War II Germany, where it was known as "Darmbrand" or "fire bowels").
CNE is a necrotizing inflammation of the small bowel (especially the jejunum but also the ileum). Clinical results may vary from mild diarrhea to a life-threatening sequence of severe abdominal pain, vomiting, bloody stool, ulceration of the small intestine with leakage (perforation) into the peritoneal cavity and possible death within a single day due to peritonitis. Many patients exhibit meteorism. Treatment involves suppressing the toxin-producing organisms with antibiotics such as penicillin G or metronidazole. About half of seriously ill patients require surgery for perforation, persistent intestinal obstruction, or failure to respond to the antibiotics. An investigational toxoid vaccine has been used successfully in some developing countries but is not available outside of research.
Horses may develop pharyngitis, laryngitis, or esophagitis secondary to indwelling nasogastric tube. Other complications include thrombophlebitis, laminitis (which subsequently reduces survival rate), and weight loss. Horses are also at increased risk of hepatic injury.
Survival rates for DPJ are 25–94%. Horses that survive the incident rarely have reoccurrence.
DPJ is most commonly seen in the Southeastern US, although cases have been reported throughout the United States and Canada, as well as sporadically in the United Kingdom and Europe. Horses in the Southeastern US tend to have a more severe form of the disease relative to other locations. Age, breed, and gender appear to have no effect on disease prevalence.
Yersiniosis is usually self-limiting and does not require treatment. For severe infections (sepsis, focal infection) especially if associated with immunosuppression, the recommended regimen includes doxycycline in combination with an aminoglycoside. Other antibiotics active against "Y. enterocolitica" include trimethoprim-sulfamethoxasole, fluoroquinolones, ceftriaxone, and chloramphenicol. "Y. enterocolitica" is usually resistant to penicillin G, ampicillin, and cephalotin due to beta-lactamase production.
"Y. enterocolitica" infections are sometimes followed by chronic inflammatory diseases such as arthritis, erythema nodosum, and reactive arthritis. This is most likely because of some immune-mediated mechanism.
"Y. enterocolitica" seems to be associated with autoimmune Graves-Basedow thyroiditis.
Whilst indirect evidence exists, direct causative evidence is limited,
and "Y. enterocolitica" is probably not a major cause of this disease, but may contribute to the development of thyroid autoimmunity arising for other reasons in genetically susceptible individuals.
"Y. enterocolitica" infection has also been suggested to not be the cause of autoimmune thyroid disease, but rather is only an associated condition, with both having a shared inherited susceptibility.
More recently, the role for "Y. enterocolitica" has been disputed.
Necrotising hepatopancreatitis (NHP), is also known as Texas necrotizing hepatopancreatitis (TNHP), Texas Pond Mortality Syndrome (TPMS) and Peru necrotizing hepatopancreatitis (PNHP), is a lethal epizootic disease of farmed shrimp. It is not very well researched yet, but generally assumed to be caused by a bacterial infection.
NHP mainly affects the farmed shrimp species "Litopenaeus vannamei" (Pacific white shrimp) and "Litopenaeus stylirostris" (Western blue shrimp), but has also been reported in three other American species, namely "Farfantepenaeus aztecus", "Farfantepenaeus californiensis", and "Litopenaeus setiferus". The highest mortality rates occur in "L. vannamei", which is one of the two most frequently farmed species of shrimp. Untreated, the disease causes mortality rates of up to 90 percent within 30 days. A first outbreak of NHP had been reported in Texas in 1985; the disease then spread to shrimp aquacultures in South America, in 2009 to China and subsequently Southeast Asia, followed by massive outbreaks in that region in 2012-2013.
NHP is associated with a small, gram-negative, and highly pleomorphic "Rickettsia"-like bacterium that belongs to its own, new genus in the alpha proteobacteria. However, in early-2013 a novel strain of "Vibrio parahaemolyticus" was identified as a more likely causative agent, though involvement of a virus cannot be definitely ruled out yet.
The aetiological agent is the pathogenic agent Candidatus "Hepatobacter penaei", an obligate intracellular bacterium of the Order α-Proteobacteria.
Infected shrimps show gross signs including soft shells and flaccid bodies, black or darkened gills, dark edges of the pleopods, and uropods, and an atrophied hepatopancreas that is whitish instead of orange or tan as is usual.
Whichever of the two bacteria associated with NHP actually causes it, the pathogen seems to prefer high water temperatures (above ) and elevated levels of salinity (more than 20–38 ppt). Avoiding such conditions in shrimp ponds is thus an important disease control measure.
Causing agents may include
- viruses : reovirus (often considered as unique cause), adenoviruses, enteroviruses, rotaviruses, parvoviruses.
- bacteria like Escherichia coli, Proteus mirabilis, Enterococcus faecium, Staphylococcus cohnii, Clostridium perfringens, Bacteroides fragilis and Bacillus licheniformis, often isolated in affected birds.
Reoviruses vaccines are advocated (in dams or in broilers) do not entirely solve the problem.
General hygiene and correct breeding conditions (especially correct brooding temperatures) may be efficient, but the disease often disappears as it had appeared, which makes it difficult to appreciate the effectiveness of control measures.
The use of a seven-way clostridial vaccination is the most common, cheapest, and efficacious preventative measure taken against blackleg. Burning the upper layer of soil to eradicate left-over spores is the best way to stop the spread of blackleg from diseased cattle. Diseased cattle should be isolated. Treatment is generally unrewarding due to the rapid progression of the disease, but penicillin is the drug of choice for treatment. Treatment is only effective in the early stages and as a control measure.
Dr. Oliver Morris (O.M.) Franklin made a significant contribution to the welfare of cattle and the livestock industry with his development of the blackleg vaccine. Franklin developed the original method of giving the vaccine while at Kansas State Agriculture College using live cattle. Franklin and another graduate veterinarian founded the original Kansas Blackleg Serum Co. in Wichita in 1916.
Amphistomiasis in farm and wild mammals is due to infection of paramphistomes, such as the species of "Paramphistomum", "Calicophoron", "Cotylophoron", "Pseudophisthodiscus", etc. These are essentially rumen flukes, of which "Paramphistomum cervi" is the most notorious in terms of prevalence and pathogenicity. Infection occurs through ingestion of contaminated vegetables and raw meat, in which the viable infective metacercaria are deposited from snails, which are the intermediate hosts. The immature flukes are responsible for destroying the mucosal walls of the alimentary tract on their way to growing into adults. It is by this fervent tissue obliteration that the clinical symptoms are manifested. The adult flukes, on the other hand, are quite harmless, as they merely prepare for reproduction.
The zoonotic infection in human is caused by "G. discoides" and "W. watsoni" which are essentially intestinal flukes. The disease due to "G. discoides" is more specifically termed gastrodiscoidiasis. In their natural hosts such as pigs and monkeys, their infection in asymptomatic, but human infection is prevalent, by which they cause serious health problems, characterised by diarrhoea, fever, abdominal pain, colic, and an increased mucous production. In extreme situations such as in Assam, India, a number of mortality among children is attributed to this disease.
Amphistomiasis or paramphistomiasis (alternatively spelled amphistomosis or paramphistomosis) is a parasitic disease of livestock animals, more commonly of cattle and sheep, and humans caused by immature helminthic flatworms belonging to the order Echinostomida. The term amphistomiasis is used for broader connotation implying the disease inflicted by members of Echinostomida including the family Paramphistomidae/Gastrodiscidae (to be precise, the species "Gastrodiscoides hominis"); whereas paramphistomiasis is restricted to that of the members of the family Paramphistomatidae only. "G. discoides" and "Watsonius watsoni" are responsible for the disease in humans, while most paramphistomes are responsible in livestock animals, and some wild mammals. In livestock industry the disease causes heavy economic backlashes due to poor production of milk, meat and wool.
Most losses due to blackleg occur when the cattle are between the ages of six months and two years, although it can occur when they are as young as two months. Typically, cattle that have a high feed intake and are well-conditioned tend to be the most susceptible to blackleg. Furthermore, many blackleg cases occur during the hot and humid summer months or after a sudden cold period, but cases can occur at any time during the year.
The newborn`s exposure to the maternal vaginal bacterial flora which contains aerobic and anaerobic bacterial flora can lead to the development of anaerobic bacterial infection. These infections include cellulitis of the site of fetal monitoring (caused by "Bacterodes" spp.), bacteremia, aspiration pneumonia (caused by "Bacterodes" spp.), conjunctivitis (caused by clostridia,) omphalitis (caused by mixed flora), and infant botulism. Clostridial species may play a role in necrotizing enterocolitis. Management of these infection necessitates treating of the underlying condition(s) when present, and administration of proper antimicrobial therapy
Colitis is inflammation of the colon. Acute cases are medical emergencies as the horse rapidly loses fluid, protein, and electrolytes into the gut, leading to severe dehydration which can result in hypovolemic shock and death. Horses generally present with signs of colic before developing profuse, watery, fetid diarrhea.
Both infectious and non-infectious causes for colitis exist. In the adult horse, "Salmonella", "Clostridium difficile", and "Neorickettsia risticii" (the causative agent of Potomac Horse Fever) are common causes of colitis. Antibiotics, which may lead to an altered and unhealthy microbiota, sand, grain overload, and toxins such as arsenic and cantharidin can also lead to colitis. Unfortunately, only 20–30% of acute colitis cases are able to be definitively diagnosed. NSAIDs can cause slower-onset of colitis, usually in the right dorsal colon (see Right dorsal colitis).
Treatment involves administration of large volumes of intravenous fluids, which can become very costly. Antibiotics are often given if deemed appropriate based on the presumed underlying cause and the horse's CBC results. Therapy to help prevent endotoxemia and improve blood protein levels (plasma or synthetic colloid administration) may also be used if budgetary constraints allow. Other therapies include probiotics and anti-inflammatory medication. Horses that are not eating well may also require parenteral nutrition. Horses usually require 3–6 days of treatment before clinical signs improve.
Due to the risk of endotoxemia, laminitis is a potential complication for horses suffering from colitis, and may become the primary cause for euthanasia. Horses are also at increased risk of thrombophlebitis.