Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The effects of myoclonus in an individual can vary depending on the form and the overall health of the individual. In severe cases, particularly those indicating an underlying disorder in the brain or nerves, movement can be extremely distorted and limit ability to normally function, such as in eating, talking, and walking. In these cases, treatment that is usually effective, such as clonazepam and sodium valproate, may instead cause adverse reaction to the drug, including increased tolerance and a greater need for increase in dosage. However, the prognosis for more simple forms of myoclonus in otherwise healthy individuals may be neutral, as the disease may cause few to no difficulties. Other times the disease starts simply, in one region of the body, and then spreads.
Research on myoclonus is supported through the National Institute of Neurological Disorders and Stroke (NINDS). The primary focus of research is on the role of neurotransmitters and receptors involved in the disease. Identifying whether or not abnormalities in these pathways cause myoclonus may help in efforts to develop drug treatments and diagnostic tests. Determining the extent that genetics play in these abnormalities may lead to potential treatments for their reversal, potentially correcting the loss of inhibition while enhancing mechanisms in the body that would compensate for their effects.
The causes of epilepsy in childhood vary. In about ⅔ of cases, it is unknown.
- Unknown 67.6%
- Congenital 20%
- Trauma 4.7%
- Infection 4%
- Stroke 1.5%
- Tumor 1.5%
- Degenerative .7%
An occurrence of Todd's paralysis indicates that a seizure has occurred. The prognosis for the patient depends upon the effects of the seizure, not the occurrence of the paralysis.
The prognosis for Rolandic seizures is invariably excellent, with probably less than 2% risk of developing absence seizures and less often GTCS in adult life.
Remission usually occurs within 2–4 years from onset and before the age of 16 years. The total number of seizures is low, the majority of patients having fewer than 10 seizures; 10–20% have just a single seizure. About 10–20% may have frequent seizures, but these also remit with age.
Children with Rolandic seizures may develop usually mild and reversible linguistic, cognitive and behavioural abnormalities during the active phase of the disease. These may be worse in children with onset of seizures before 8 years of age, high rate of occurrence and multifocal EEG spikes.
The development, social adaptation and occupations of adults with a previous history of Rolandic seizures were found normal.
The incidence of hemifacial spasm is approximately 0.8 per 100,000 persons. Hemifacial spasm is more prevalent among females over 40 years of age. The estimated prevalence for women is 14.5 per 100,000 and 7.4 per 100,000 in men. Prevalence for hemifacial spasm increase with age, reaching 39.7 per 100,000 for those aged 70 years and older. One study divided 214 hemifacial patients based on the cause of the disease. The patients who had a compression in the facial nerve at the end of the brain stem as the primary hemifacial spasm and patients who had peripheral facial palsy or nerve lesion due to tumors, demyelination, trauma, or infection as secondary hemifacial spasm. The study found that 77% of hemifacial spasm is due to primary hemifacial spasm and 23% is due to secondary hemifacial spasm. The study also found both sets of patients to share similar age at onset, male to female ratios, and similar affected side. Another study with 2050 patients presented with hemifacial spasm between 1986 and 2009, only 9 cases were caused by a cerebellopontine angle syndrome, an incidence of 0.44%.
It is unknown as to what causes abdominal epilepsy. While a causal relationship between seizure activity and the GI symptoms has not been proven, the GI symptoms cannot be explained by other pathophysiological mechanisms, and are seen to improve upon anticonvulsant treatment. Because the condition is so rare, no high-quality studies exist. There have been too few reported cases to identify risk factors, genetic factors, or other potential causes.
The cause of Todd's paresis been attributed to the affected cortex being ‘exhausted’ or silenced due to increased inhibition, but these conjectures are not supported. It has been observed that the impairments that follow seizures are similar to those that follow strokes, where for a period of time blood flow to certain areas of the brain is restricted and these areas are starved of oxygen.
Consistent risk factors include:
- Severity of seizures, increased refractoriness of epilepsy and presence of generalized tonic-clonic seizures: the most consistent risk factor is an increased frequency of tonic–clonic seizures.
- Poor compliance. Lack of therapeutic levels of anti-epileptic drugs, non-adherence to treatment regimens, and frequent changes in regimens are risk factors for sudden death.
- Young age, and early age of seizures onset.
- Male gender
- Poly-therapy of epilepsy. It remains unclear whether this is an independent risk factor or a surrogate marker for severity of epilepsy.
- Being asleep during a seizure is likely to favour SUDEP occurrence.
The age of onset ranges from 1 to 14 years with 75% starting between 7–10 years. There is a 1.5 male predominance, prevalence is around 15% in children aged 1–15 years with non-febrile seizures and incidence is 10–20/100,000 of children aged 0–15 years
Microvascular decompression appears to be the most popular surgical treatment at present. Microvascular decompression relieves pressure on the facial nerve, which is the cause of most hemifacial spasm cases. Excellent to good results are reported in 80% or more cases with a 10% recurrence rate. In the present series approximately 10% had previously failed surgery. Serious complications can follow microsurgical decompressive operations, even when performed by experienced surgeons. These include cerebellar haematoma or swelling, brain stem infarction (blood vessel of the brain stem blocked), cerebral infarction (ischemic stroke resulting from a disturbance in the blood vessels supplying blood to the brain), subdural haematoma and intracerebral infarction (blockage of blood flow to the brain). Death or permanent disability (hearing loss) can occur in 2% of patients of hemifacial spasm.
Possible causes include:
- Syncope (fainting)
- Reflex anoxic seizures
- Breath-holding spells of childhood
- Hypoglycaemia
- Cataplexy
- Hyperekplexia, also called startle syndrome
- Migraine
- Narcolepsy
- Non-epileptic myoclonus
- Opsoclonus
- Parasomnias, including night terrors
- Paroxysmal kinesigenic dyskinesia
- Repetitive or ritualistic behaviours
- Tics
- AADC Deficiency
Epilepsy with myoclonic-astatic seizures has a variable course and outcome. Spontaneous remission with normal development has been observed in a few untreated cases. Complete seizure control can be achieved in about half of the cases with antiepileptic drug treatment (Doose and Baier 1987b; Dulac et al. 1990). In the remainder of cases, the level of intelligence deteriorates and the children become severely intellectually disabled. Other neurologic abnormalities such as ataxia, poor motor function, dysarthria, and poor language development may emerge (Doose 1992b). However, this proportion may not be representative because in this series the data were collected in an institution for children with severe epilepsy.
The outcome is unfavorable if generalized tonic-clonic, tonic, or clonic seizures appear at the onset or occur frequently during the course. Generalized tonic-clonic seizures usually occur during the daytime in this disorder, at least in the early stages. Nocturnal generalized tonic-clonic seizures, which may develop later, are another unfavorable sign. If tonic seizures appear, prognosis is poor.
Status epilepticus with myoclonic, astatic, myoclonic-astatic, or absence seizures is another ominous sign, especially when prolonged or appearing early.
Failure to suppress the EEG abnormalities (4- to 7-Hz rhythms and spike-wave discharges) during therapy and absence of occipital alpha-rhythm with therapy also suggest a poor prognosis (Doose 1992a).
PME accounts for less than 1% of epilepsy cases at specialist centres. The incidence and prevalence of PME is unknown, but there are considerable geography and ethnic variations amongst the specific genetic disorders. One cause, Unverricht Lundborg Disease, has an incidence of at least 1:20,000 in Finland.
Epilepsy is a relatively common disorder, affecting between 0.5-1% of the population, and frontal lobe epilepsy accounts for about 1-2% of all epilepsies. The most common subdivision of epilepsy is symptomatic partial epilepsy, which causes simple partial seizures, and can be further divided into temporal and frontal lobe epilepsy. Although the exact number of cases of frontal lobe epilepsy is not currently known, it is known that FLE is the less common type of partial epilepsy, accounting for 20-30% of operative procedures involving intractable epilepsy. The disorder also has no gender or age bias, affecting males and females of all ages. In a recent study, the mean subject age with frontal lobe epilepsy was 28.5 years old, and the average age of epilepsy onset for left frontal epilepsy was 9.3 years old whereas for right frontal epilepsy it was 11.1 years old.
Like other forms of epilepsy, abdominal epilepsy is treated with anticonvulsant drugs, such as phenytoin. Since no controlled studies exist, however, other drugs may be equally effective.
People with epilepsy are at an increased risk of death. This increase is between 1.6 and 4.1 fold greater than that of the general population and is often related to: the underlying cause of the seizures, status epilepticus, suicide, trauma, and sudden unexpected death in epilepsy (SUDEP). Death from status epilepticus is primarily due to an underlying problem rather than missing doses of medications. The risk of suicide is increased between two and six times in those with epilepsy. The cause of this is unclear. SUDEP appears to be partly related to the frequency of generalized tonic-clonic seizures and accounts for about 15% of epilepsy related deaths. It is unclear how to decrease its risk. The greatest increase in mortality from epilepsy is among the elderly. Those with epilepsy due to an unknown cause have little increased risk. In the United Kingdom, it is estimated that 40–60% of deaths are possibly preventable. In the developing world, many deaths are due to untreated epilepsy leading to falls or status epilepticus.
Drugs that can trigger an oculogyric crisis include neuroleptics (such as haloperidol, chlorpromazine, fluphenazine, olanzapine), carbamazepine, chloroquine, cisplatin, diazoxide, levodopa, lithium, metoclopramide, lurasidone, domperidone, nifedipine, pemoline, phencyclidine ("PCP"), reserpine, and cetirizine, an antihistamine. High-potency neuroleptics are probably the most common cause in the clinical setting.
Other causes can include postencephalitic Parkinson's, Tourette's syndrome, multiple sclerosis, neurosyphilis, head trauma, bilateral thalamic infarction, lesions of the fourth ventricle, cystic glioma of the third ventricle, herpes encephalitis, kernicterus and juvenile Parkinson's.
To date, there is no single, universal treatment that has been found to cure myoclonus dystonia. However, there are several treatment methods that have been found to be effective for helping to reduce the symptoms associated with the syndrome.
The lack of generally recognized clinical recommendations available are a reflection of the dearth of data on the effectiveness of any particular clinical strategy, but on the basis of present evidence, the following may be relevant:
- Epileptic seizure control with the appropriate use of medication and lifestyle counseling is the focus of prevention.
- Reduction of stress, participation in physical exercises, and night supervision might minimize the risk of SUDEP.
- Knowledge of how to perform the appropriate first-aid responses to seizure by persons who live with epileptic people may prevent death.
- People associated with arrhythmias during seizures should be submitted to extensive cardiac investigation with a view to determining the indication for on-demand cardiac pacing.
- Successful epilepsy surgery may reduce the risk of SUDEP, but this depends on the outcome in terms of seizure control.
- The use of anti suffocation pillows have been advocated by some practitioners to improve respiration while sleeping, but their effectiveness remain unproven because experimental studies are lacking.
- Providing information to individuals and relatives about SUDEP is beneficial.
Non-epileptic seizures are paroxysmal events that mimic an epileptic seizure but do not involve abnormal, rhythmic discharges of cortical neurons. They are caused by either physiological or psychological conditions. The latter is discussed more fully in psychogenic non-epileptic seizures.
[Please could somebody add an actual description of what happens when somebody has a seizure or 'paroxysmal event'?!]
Myoclonic astatic epilepsy, also known as myoclonic atonic epilepsy or Doose syndrome, is a generalized idiopathic epilepsy. It is characterized by the development of myoclonic seizures and/or myoclonic astatic seizures.
Myoclonic dystonia or Myoclonus dystonia syndrome is a rare movement disorder that induces spontaneous muscle contraction causing abnormal posture. The prevalence of myoclonus dystonia has not been reported, however, this disorder falls under the umbrella of movement disorders which affect thousands worldwide. Myoclonus dystonia results from mutations in the SGCE gene coding for an integral membrane protein found in both neurons and muscle fibers. Those suffering from this disease exhibit symptoms of rapid, jerky movements of the upper limbs (myoclonus), as well as distortion of the body's orientation due to simultaneous activation of agonist and antagonist muscles (dystonia).
Myoclonus dystonia is caused by loss-of-function-mutations in the epsilon sarcoglycan gene (SGCE). The disease is dominantly inherited, however SGCE is an imprinted gene, so only the paternal allele is expressed. Therefore, children suffering from this disease inherit the mutation from the father. If the mutated allele is inherited from the mother, the child is not likely to exhibit symptoms.
While no cure has been found for myoclonus dystonia, treatment options are available to those suffering from the disease. Ethanol often ameliorates the symptoms well, and so the syndrome is also called "Alcohol-responsive dystonia". Alcohol may be substituted by benzodiazepines, such as clonazepam, which work through the same mechanism. Deep brain stimulation (DBS) is another viable option that can alleviate symptoms without the unwanted side effects of medications, and has been successful in treating other movement disorders.
Juvenile myoclonic epilepsy (JME), also known as Janz syndrome, is a fairly common form of idiopathic generalized epilepsy, representing 5-10% of all epilepsy cases. This disorder typically first manifests itself between the ages of 12 and 18 with brief episodes of involuntary muscle twitching occurring early in the morning. Most patients also have generalized seizures that affect the entire brain and many also have absence seizures. Genetic studies have demonstrated at least 6 loci for JME, 4 with known causative genes.
Most of these genes are ion channels with the one non-ion channel gene having been shown to affect ion channel currents.
Most children who develop epilepsy are treated conventionally with anticonvulsants. In about 70% of cases of childhood epilepsy, medication can completely control seizures. Unfortunately, medications come with an extensive list of side effects that range from mild discomfort to major cognitive impairment. Usually, the adverse cognitive effects are ablated following dose reduction or cessation of the drug.
Medicating a child is not always easy. Many pills are made only to be swallowed, which can be difficult for a child. For some medications, chewable versions do exist.
The ketogenic diet is used to treat children who have not responded successfully to other treatments. This diet is low in carbohydrates, adequate in protein and high in fat. It has proven successful in two thirds of epilepsy cases.
In some cases, severe epilepsy is treated with the hemispherectomy, a drastic surgical procedure in which part or all of one of the hemispheres of the brain is removed.