Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Factors increasing the risk (to either the woman, the fetus/es, or both) of pregnancy complications beyond the normal level of risk may be present in a woman's medical profile either before she becomes pregnant or during the pregnancy. These pre-existing factors may relate to physical and/or mental health, and/or to social issues, or a combination.
Some common risk factors include:
- Age of either parent
- Adolescent parents
- Older parents
- Exposure to environmental toxins in pregnancy
- Exposure to recreational drugs in pregnancy:
- Ethanol during pregnancy can cause fetal alcohol syndrome and fetal alcohol spectrum disorder.
- Tobacco smoking and pregnancy, when combined, causes twice the risk of premature rupture of membranes, placental abruption and placenta previa. Also, it causes 30% higher odds of the baby being born prematurely.
- Prenatal cocaine exposure is associated with, for example, premature birth, birth defects and attention deficit disorder.
- Prenatal methamphetamine exposure can cause premature birth and congenital abnormalities. Other investigations have revealed short-term neonatal outcomes to include small deficits in infant neurobehavioral function and growth restriction when compared to control infants. Also, prenatal methamphetamine use is believed to have long-term effects in terms of brain development, which may last for many years.
- Cannabis in pregnancy is possibly associated with adverse effects on the child later in life.
- Exposure to Pharmaceutical drugs in pregnancy. Anti-depressants, for example, may increase risks of such outcomes as preterm delivery.
- Ionizing radiation
- Risks arising from previous pregnancies:
- Complications experienced during a previous pregnancy are more likely to recur.
- Many previous pregnancies. Women who have had five previous pregnancies face increased risks of very rapid labor and excessive bleeding after delivery.
- Multiple previous fetuses. Women who have had more than one fetus in a previous pregnancy face increased risk of mislocated placenta.
- Multiple pregnancy, that is, having more than one fetus in a single pregnancy.
- Social and socioeconomic factors. Generally speaking, unmarried women and those in lower socioeconomic groups experience an increased level of risk in pregnancy, due at least in part to lack of access to appropriate prenatal care.
- Unintended pregnancy. Unintended pregnancies preclude preconception care and delays prenatal care. They preclude other preventive care, may disrupt life plans and on average have worse health and psychological outcomes for the mother and, if birth occurs, the child.
- Height. Pregnancy in women whose height is less than 1.5 meters (5 feet) correlates with higher incidences of preterm birth and underweight babies. Also, these women are more likely to have a small pelvis, which can result in such complications during childbirth as shoulder dystocia.
- Weight
- Low weight: Women whose pre-pregnancy weight is less than 45.5 kilograms (100 pounds) are more likely to have underweight babies.
- Obese women are more likely to have very large babies, potentially increasing difficulties in childbirth. Obesity also increases the chances of developing gestational diabetes, high blood pressure, preeclampsia, experiencing postterm pregnancy and/or requiring a cesarean delivery.
- Intercurrent disease in pregnancy, that is, a disease and condition not necessarily directly caused by the pregnancy, such as diabetes mellitus in pregnancy, SLE in pregnancy or thyroid disease in pregnancy.
A number of studies have shown that tobacco use is a significant factor in miscarriages among pregnant smokers, and that it contributes to a number of other threats to the health of the fetus. Smoking and pregnancy, combined, cause twice the risk of premature rupture of membranes, placental abruption and placenta previa. Also, it causes 30% higher odds of the baby being born prematurely.
Some disorders and conditions can mean that pregnancy is considered high-risk (about 6-8% of pregnancies in the USA) and in extreme cases may be contraindicated. High-risk pregnancies are the main focus of doctors specialising in maternal-fetal medicine.
Serious pre-existing disorders which can reduce a woman's physical ability to survive pregnancy include a range of congenital defects (that is, conditions with which the woman herself was born, for example, those of the heart or , some of which are listed above) and diseases acquired at any time during the woman's life.
Passive smoking is associated with many risks to children, including, sudden infant death syndrome (SIDS), asthma, lung infections, impaired respiratory function and slowed lung growth, Crohn's disease, learning difficulties and neurobehavioral effects, an increase in tooth decay, and an increased risk of middle ear infections.
Medical organizations strongly discourage drinking alcohol during pregnancy. Alcohol passes easily from the mother's bloodstream through the placenta and into the bloodstream of the fetus, which interferes with brain and organ development. Alcohol can affect the fetus at any stage during pregnancy, but the level of risk depends on the amount and frequency of alcohol consumed. Regular heavy drinking and binge drinking (four or more drinks on any one occasion) pose the greatest risk for harm, but lesser amounts can cause problems as well. There is no known safe amount or safe time to drink during pregnancy. Every year about 12,000 babies are born with FAS in the US. Around 60,000 are born with some kind of alcohol-related abnormalities and developmental issues. Despite this 1 in 10 pregnant women report drinking alcohol, 1 in 33 binge drink.
Prenatal alcohol exposure can lead to fetal alcohol spectrum disorders (FASDs). The most severe form of FASD is fetal alcohol syndrome (FAS). Problems associated with FASD include facial anomalies, low birth weight, stunted growth, small head size, delayed or uncoordinated motor skills, hearing or vision problems, learning disabilities, behavior problems, and inappropriate social skills compared to same-age peers. Those affected are more likely to have trouble in school, legal problems, participate in high-risk behaviors, and develop substance use disorders themselves. It's also been shown that alcohol impairs global motion perception if consumed during the prenatal development period. It was also shown that with an increasing amount of alcohol exposure there is a correlation with an increase in the impairment of global motion perception.
The following have been identified as risk factors for placenta previa:
- Previous placenta previa (recurrence rate 4–8%), caesarean delivery, myomectomy or endometrium damage caused by D&C.
- Women who are younger than 20 are at higher risk and women older than 35 are at increasing risk as they get older.
- Alcohol use during pregnancy was previous listed as a risk factor, but is discredited by this article.
- Women who have had previous pregnancies ( multiparity ), especially a large number of closely spaced pregnancies, are at higher risk due to uterine damage.
- Smoking during pregnancy; cocaine use during pregnancy
- Women with a large placentae from twins or erythroblastosis are at higher risk.
- Race is a controversial risk factor, with some studies finding that people from Asia and Africa are at higher risk and others finding no difference.
- Placental pathology (Vellamentous insertion, succinturiate lobes, bipartite i.e. bilobed placenta etc.)
- Baby is in an unusual position: breech (buttocks first) or transverse (lying horizontally across the womb).
Placenta previa is itself a risk factor of placenta accreta.
Some doctors recommend complete bed-rest for the mother coupled with massive intakes of protein as a therapy to try to counteract the syndrome. Research completed shows these nutritional supplements do work. Diet supplementation was associated with lower overall incidence of TTTS (20/52 versus 8/51, P = 0.02) and with lower prevalence of TTTS at delivery (18/52 versus 6/51, P = 0.012) when compared with no supplementation. Nutritional intervention also significantly prolonged the time between the diagnosis of TTTS and delivery (9.4 ± 3.7 weeks versus 4.6 ± 6.5 weeks; P = 0.014). The earlier nutritional regimen was introduced, the lesser chance of detecting TTTS ( P = 0.001). Although not statistically significant, dietary intervention was also associated with lower Quintero stage, fewer invasive treatments, and lower twin birth weight discordance. Diet supplementation appears to counter maternal metabolic abnormalities in monochorionic twin pregnancies and improve perinatal outcomes in TTTS when combined with the standard therapeutic options. Nutritional therapy appears to be most effective in mitigating cases that are caught in Quintero Stage I, little effect has been observed in those that are beyond Stage I.
Sudden infant death syndrome (SIDS) is the sudden death of an infant that is unexplainable by the infant's history. The death also remains unexplainable upon autopsy. Infants exposed to smoke, both during pregnancy and after birth, are found to be more at risk of SIDS due to the increased levels of nicotine often found in SIDS cases. Infants exposed to smoke during pregnancy are up to three times more likely to die of SIDS that children born to non-smoking mothers.
Based on recent (2005) US NCHS data, the rate of multiple births is now approximately 3.4% (4,138,349 total births, of which 139,816 were twins or higher-order multiple births).
The majority of identical twins share a common (monochorionic) placenta, and of these approximately 15% go on to develop TTTS.
By extrapolating the number of expected identical twins (about one-third) from annual multiple births, and the number of twins with monochorionic placentae (about two-thirds), and from these the number thought to develop TTTS (about 15%), there are at least 4,500 TTTS cases per year in the U.S. alone: 139,816 X .33 X .66 X .15 = 4,568 cases of TTTS per year in U.S. (involving more than 9,000 babies.)
Since spontaneous pregnancy losses and terminations that occur prior to 20 weeks go uncounted by the C.D.C., this estimate of TTTS cases may be very conservative.
Although infertility treatments have increased the rate of multiple birth, they have not appreciably diluted the expected incidence of identical twins. Studies show a higher rate of identical twins (up to 20 times with IVF) using these treatments versus spontaneous pregnancy rates.
One Australian study, however, noted an occurrence of only 1 in 4,170 pregnancies or 1 in 58 twin gestations. This distinction could be partly explained by the "hidden mortality" associated with MC multifetal pregnancies—instances lost due to premature rupture of membrane (PROM) or intrauterine fetal demise before a thorough diagnosis of TTTS can be made.
Exact cause of placenta previa is unknown. It is hypothesized to be related to abnormal vascularisation of the endometrium caused by scarring or atrophy from previous trauma, surgery, or infection. These factors may reduce differential growth of lower segment, resulting in less upward shift in placental position as pregnancy advances.
In rare cases, inherited bleeding disorders, like hemophilia, von Willebrand disease (vWD), or factor IX or XI deficiency, may cause severe postpartum hemorrhage, with an increased risk of death particularly in the postpartum period. The risk of postpartum hemorrhage in patients with vWD and carriers of hemophilia has been found to be 18.5% and 22% respectively. This pathology occurs due to the normal physiological drop in maternal clotting factors after delivery which greatly increases the risk of secondary postpartum hemorrhage.
Another bleeding risk factor is thrombocytopenia, or decreased platelet levels, which is the most common hematological change associated with pregnancy induced hypertension. If platelet counts drop less than 100,000 per microliter the patient will be at a severe risk for inability to clot during and after delivery.
Hypercoagulability in pregnancy, particularly due to inheritable thrombophilia, can lead to placental vascular thrombosis. This can in turn lead to complications like early-onset hypertensive disorders of pregnancy, pre-eclampsia and small for gestational age infants (SGA). Among other causes of hypercoagulability, Antiphospholipid syndrome has been associated with adverse pregnancy outcomes including recurrent miscarriage. Deep vein thrombosis has an incidence of one in 1,000 to 2,000 pregnancies in the United States, and is the second most common cause of maternal death in developed countries after bleeding.
The most common cause is the mismanagement of 3rd stage of labor, such as:
- Fundal pressure
- Excess cord traction during the 3rd stage of labor
Other natural causes can be:
- Uterine weakness, congenital or not
- Precipitate delivery
- Short umbilical cord
It is more common in multiple gestation than in singleton pregnancies.
The incidence is of 1/2000 pregnancies.
It is recommended that women with vasa previa should deliver through elective cesarean prior to rupture of the membranes. Given the timing of membrane rupture is difficult to predict, elective cesarean delivery at 35–36 weeks is recommended. This gestational age gives a reasonable balance between the risk of death and that of prematurity. Several authorities have recommended hospital admission about 32 weeks. This is to give the patient proximity to the operating room for emergency delivery should the membranes rupture. Because these patients are at risk for preterm delivery, it is recommended that steroids should be given to promote fetal lung maturation. When bleeding occurs, the patient goes into labor, or if the membranes rupture, immediate treatment with an emergency caesarean delivery is usually indicated.
Most pregnancies that are diagnosed with confined placental mosaicism continue to term with no complications and the children develop normally.
However, some pregnancies with CPM experience prenatal or perinatal complications. The pregnancy loss rate in pregnancies with confined placental mosaicism, diagnosed by chorionic villus sampling, is higher than among pregnancies without placental mosaicism. It may be that sometimes the presence of significant numbers of abnormal cells in the placenta interferes with proper placental function. An impaired placenta cannot support the pregnancy and this may lead to the loss of a chromosomally normal baby. On the other hand, an apparently normal diploid fetus may experience problems with growth or development due to the effects of uniparental disomy (UPD). Intrauterine growth restriction (IUGR) has been reported in a number of CPM cases. In follow-up studies adequate postnatal catch-up growth has been demonstrated, which may suggest a placental cause of the IUGR.
When predicting the likely effects (if any) of CPM detected in the first trimester, several potentially interactive factors may be playing a role, including:
- "Origin of error:" Somatic errors are associated with lower levels of trisomy in the placenta and are expected usually to involve only one cell line (i.e.: the trophoblast cells or the villus stroma cells). Somatic errors are thus less likely than meiotic errors to be associated with either ultrasound abnormalities, growth problems or detectable levels of trisomy in small samples of prenatal CVS. Currently, there is no evidence that somatic errors, which lead to confined placental trisomy, are of any clinical consequence. Errors of meiotic origin are correlated with higher levels of trisomy in placental tissues and may be associated with adverse pregnancy outcome. The cell type in which the abnormality is seen is also an important factor in determining the risk of fetal involvement. The villus stroma or mesenchymal core is more likely than the cytotrophoblast to be reflective of the fetal genotype.
- "Level of mosaicism:" There is a correlation between a high number of aneuploid cells detected at CVS with poor pregnancy progress. This includes an association between high levels of abnormal cells in placental tissue and concerns with the growth of the baby. However, it is not accurate to use these associations to try to predict pregnancy outcome based on the percent of trisomic cells in a first trimester CVS result.
- "Specific chromosomes:" The influence of CPM on fetal growth is chromosome specific. Certain chromosomes carry imprinted genes involved in growth or placental function, which may contribute to impaired pregnancy progress when CPM is detected. Different chromosomes are observed at different frequencies depending on the type of CPM observed. The pregnancy outcome is strongly chromosome specific. The most frequently seen trisomic cells in confined placental mosaicism involve chromosomes 2, 3, 7, 8 and 16. The next frequently involved are 9, 13, 15, 18, 20 and 22. It has been observed that CPM involving the sex chromosomes usually has no adverse effects on fetal development. The common autosomal trisomies (21, 18, 13) made up a smaller number of cases of mosaicism detected on CVS, but were more often confirmed in fetal tissue (19%). On the other hand, the uncommon autosomal trisomies accounted for a greater number of placental mosaicism cases, but were less often confirmed in fetal tissue (3.2%). When CPM is detected on CVS involving certain chromosomes which are known or suspected to carry imprinted genes, molecular investigations should be performed to exclude fetal UPD. We will explore chromosome specific cases in the chromosome specific section.
- "Type of chromosome abnormality:" The factor that had the highest predictive value as to whether the fetus was affected or not was the type of chromosome abnormality. Marker chromosomes were more often confirmed in the fetus than trisomies. For example, of 28 cases of mosaic polyploidy detected on CVS, fetal mosaicism was confirmed in only one case. This is compared to marker chromosomes detected on CVS, in which mosaicism was confirmed in 1/4 of the fetuses.
Uterine inversion is often associated with significant Post-partum hemorrhage. Traditionally it was thought that it presented with haemodynamic shock "out of proportion" with blood loss, however blood loss has often been underestimated. The parasympathetic effect of traction on the uterine ligaments may cause bradycardia.
Although the risk of placental abruption cannot be eliminated, it can be reduced. Avoiding tobacco, alcohol and cocaine during pregnancy decreases the risk. Staying away from activities which have a high risk of physical trauma is also important. Women who have high blood pressure or who have had a previous placental abruption and want to conceive must be closely supervised by a doctor.
The risk of placental abruption can be reduced by maintaining a good diet including taking folic acid, regular sleep patterns and correction of pregnancy-induced hypertension.
It is crucial for women to be made aware of the signs of placental abruption, such as vaginal bleeding, and that if they experience such symptoms they must get into contact with their health care provider/the hospital "without any delay".
In low-risk pregnancies, the association between cigarette smoking and a reduced risk of pre-eclampsia has been consistent and reproducible across epidemiologic studies. High-risk pregnancies (those with pregestational diabetes, chronic hypertension, history of pre-eclampsia in a previous pregnancy, or multifetal gestation) showed no significant protective effect. The reason for this discrepancy is not definitively known; research supports speculation that the underlying pathology increases the risk of preeclampsia to such a degree that any measurable reduction of risk due to smoking is masked. However, the damaging effects of smoking on overall health and pregnancy outcomes outweighs the benefits in decreasing the incidence of preeclampsia. It is recommended that smoking be stopped prior to, during and after pregnancy.
Studies suggest that marijuana use in the months prior to or during the early stages of pregnancy may interfere with normal placental development and consequently increase the risk of preeclampsia.
There is also an increased risk for cardiovascular complications, including hypertension and ischemic heart disease, and kidney disease. Other risks include stroke and venous thromboembolism. It seems pre-eclampsia does not increase the risk of cancer.
Lowered blood supply to the fetus in pre-eclampsia causes lowered nutrient supply, which could result in intrauterine growth restriction (IUGR) and low birth weight. The fetal origins hypothesis states that fetal undernutrition is linked with coronary heart disease later in adult life due to disproportionate growth.
Because preeclampsia leads to a mismatch between the maternal energy supply and fetal energy demands, pre-eclampsia can lead to IUGR in the developing fetus. Infants suffering from IUGR are prone to suffer from poor neuronal development and in increased risk for adult disease according to the Barker hypothesis. Associated adult diseases of the fetus due to IUGR include, but are not limited to, coronary artery disease (CAD), type 2 diabetes mellitus (T2DM), cancer, osteoporosis, and various psychiatric illnesses.
The risk of pre-eclampsia and development of placental dysfunction has also been shown to be recurrent cross-generationally on the maternal side and most likely on the paternal side. Fetuses born to mothers that were born small for gestational age (SGA) were 50% more likely to develop preeclampsia while fetuses born to both SGA parents were three-fold more likely to develop preeclampsia in future pregnancies.
AS has a reported incidence of 25% of D&Cs performed 1–4 weeks post-partum, up to 30.9% of D&Cs performed for missed miscarriages and 6.4% of D&Cs performed for incomplete miscarriages. In another study, 40% of patients who underwent repeated D&C for retained products of conception after missed miscarriage or retained placenta developed AS.
In the case of missed miscarriages, the time period between fetal demise and curettage may increase the likelihood of adhesion formation due to fibroblastic activity of the remaining tissue.
The risk of AS also increases with the number of procedures: one study estimated the risk to be 16% after one D&C and 32% after 3 or more D&Cs. However, a single curettage often underlies the condition.
In an attempts to estimate the prevalence of AS in the general population, it was found in 1.5% of women undergoing hysterosalpingography HSG, and between 5 and 39% of women with recurrent miscarriage.
After miscarriage, a review estimated the prevalence of AS to be approximately 20% (95% confidence interval: 13% to 28%).
The prognosis of this complication depends on whether treatment is received by the patient, on the quality of treatment, and on the severity of the abruption. Outcomes for the baby also depend on the gestational age.
In the Western world, maternal deaths due to placental abruption are rare. The fetal prognosis is worse than the maternal prognosis; approximately 12% of fetuses affected by placental abruption die. 77% of fetuses that die from placental abruption die before birth; the remainder die due to complications of preterm birth.
Without any form of medical intervention, as often happens in many parts of the world, placental abruption has a high maternal mortality rate.
Antepartum bleeding (APH), also prepartum hemorrhage, is bleeding during pregnancy from the 24th week (sometimes defined as from the 20th week) gestational age to full term (40th week). The primary consideration is the presence of a placenta previa which is a low lying placenta at or very near to the internal cervical os. This condition occurs in roughly 4 out of 1000 pregnancies and usually needs to be resolved by delivering the baby via cesarean section. Also a placental abruption (in which there is premature separation of the placenta) can lead to obstetrical hemorrhage, sometimes concealed. This pathology is of important consideration after maternal trauma such as a motor vehicle accident or fall.
Other considerations to include when assessing antepartum bleeding are: sterile vaginal exams that are performed in order to assess dilation of the patient when the 40th week is approaching. As well as cervical insufficiency defined as a midtrimester (14th-26th week) dilation of the cervix which may need medical intervention to assist in keeping the pregnancy sustainable.
Vasa previa is seen more commonly with velamentous insertion of the umbilical cord, accessory placental lobes (succenturiate or bilobate placenta), multiple gestation, IVF pregnancy. In IVF pregnancies incidences as high as one in 300 have been reported. The reasons for this association are not clear, but disturbed orientation of the blastocyst at implantation, vanishing embryos and the increased frequency of placental morphological variations in in vitro fertilisation pregnancies have all been postulated.
Some women have a greater risk of developing hypertension during pregnancy. These are:
- Women with chronic hypertension (high blood pressure before becoming pregnant).
- Women who developed high blood pressure or preeclampsia during a previous pregnancy, especially if these conditions occurred early in the pregnancy.
- Women who are obese prior to pregnancy.
- Pregnant women under the age of 20 or over the age of 40.
- Women who are pregnant with more than one baby.
- Women with diabetes, kidney disease, rheumatoid arthritis, lupus, or scleroderma.
Confined placental mosaicism (CPM) represents a discrepancy between the chromosomal makeup of the cells in the placenta and the cells in the baby. CPM was first described by Kalousek and Dill in 1983. CPM is diagnosed when some trisomic cells are detected on chorionic villus sampling and only normal cells are found on a subsequent prenatal test, such as amniocentesis or fetal blood sampling. In theory, CPM is when the trisomic cells are found only in the placenta. CPM is detected in approximately 1-2% of ongoing pregnancies that are studied by chorionic villus sampling (CVS) at 10 to 12 weeks of pregnancy. Chorionic villus sampling is a prenatal procedure which involves a placental biopsy. Most commonly when CPM is found it represents a trisomic cell line in the placenta and a normal diploid chromosome complement in the baby. However, the fetus is involved in about 10% of cases.