Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
When a pleural effusion has been determined to be exudative, additional evaluation is needed to determine its cause, and amylase, glucose, pH and cell counts should be measured.
- Red blood cell counts are elevated in cases of bloody effusions (for example after heart surgery or hemothorax from incomplete evacuation of blood).
- Amylase levels are elevated in cases of esophageal rupture, pancreatic pleural effusion, or cancer.
- Glucose is decreased with cancer, bacterial infections, or rheumatoid pleuritis.
- pH is low in empyema (<7.2) and may be low in cancer.
- If cancer is suspected, the pleural fluid is sent for cytology. If cytology is negative, and cancer is still suspected, either a thoracoscopy, or needle biopsy of the pleura may be performed.
- Gram staining and culture should also be done.
- If tuberculosis is possible, examination for "Mycobacterium tuberculosis" (either a Ziehl–Neelsen or Kinyoun stain, and mycobacterial cultures) should be done. A polymerase chain reaction for tuberculous DNA may be done, or adenosine deaminase or interferon gamma levels may also be checked.
The most common causes of exudative pleural effusions are bacterial pneumonia, cancer (with lung cancer, breast cancer, and lymphoma causing approximately 75% of all malignant pleural effusions), viral infection, and pulmonary embolism.
Another common cause is after heart surgery, when incompletely drained blood can lead to an inflammatory response that causes exudative pleural fluid.
Conditions associated with exudative pleural effusions:
- Parapneumonic effusion due to pneumonia
- Malignancy (either lung cancer or metastases to the pleura from elsewhere)
- Infection (empyema due to bacterial pneumonia)
- Trauma
- Pulmonary infarction
- Pulmonary embolism
- Autoimmune disorders
- Pancreatitis
- Ruptured esophagus (Boerhaave's syndrome)
- Rheumatoid pleurisy
- Drug-induced lupus
The most common causes of transudative pleural effusions in the United States are heart failure and cirrhosis. Nephrotic syndrome, leading to the loss of large amounts of albumin in urine and resultant low albumin levels in the blood and reduced colloid osmotic pressure, is another less common cause of pleural effusion. Pulmonary emboli were once thought to cause transudative effusions, but have been recently shown to be exudative.
The mechanism for the exudative pleural effusion in pulmonary thromboembolism is probably related to increased permeability of the capillaries in the lung, which results from the release of cytokines or inflammatory mediators (e.g. vascular endothelial growth factor) from the platelet-rich blood clots. The excessive interstitial lung fluid traverses the visceral pleura and accumulates in the pleural space.
Conditions associated with transudative pleural effusions include:
- Congestive heart failure
- Liver cirrhosis
- Severe hypoalbuminemia
- Nephrotic syndrome
- Acute atelectasis
- Myxedema
- Peritoneal dialysis
- Meigs' syndrome
- Obstructive uropathy
- End-stage kidney disease
The condition is rare but serious, and appears in all mammals. It results from leakage of lymph fluid from the thoracic duct (or one of its tributaries). This can result from direct laceration (e.g., from surgery) or from nontraumatic causes. The most common nontraumatic cause is malignancy, especially lymphoma. Less common is left-heart failure, infections, and developmental abnormalities such as Down syndrome and Noonan syndrome.
A chylothorax (or chyle leak) is a type of pleural effusion. It results from lymph formed in the digestive system called chyle accumulating in the pleural cavity due to either disruption or obstruction of the thoracic duct.
In people on a normal diet, this effusion can be identified by its turbid, milky white appearance, since chyle contains high levels of triglycerides. It is important to distinguish chylothorax from pseudochylothorax (pleural effusions high in cholesterol), which has a similar appearance, but is caused by more chronic inflammatory processes, and has a different treatment.
As with other chest injuries such as pulmonary contusion, hemothorax, and pneumothorax, pulmonary laceration can often be treated with just supplemental oxygen, ventilation, and drainage of fluids from the chest cavity. A thoracostomy tube can be used to remove blood and air from the chest cavity. About 5% of cases require surgery, called thoracotomy. Thoracotomy is especially likely to be needed if a lung fails to re-expand; if pneumothorax, bleeding, or coughing up blood persist; or in order to remove clotted blood from a hemothorax. Surgical treatment includes suturing, stapling, oversewing, and wedging out of the laceration. Occasionally, surgeons must perform a lobectomy, in which a lobe of the lung is removed, or a pneumonectomy, in which an entire lung is removed.
Pregnancy has been reported to exacerbate LAM in some cases. However, the risk has not been rigorously studied. In a survey of 318 patients who indicated that they had had at least one pregnancy, 163 responded to a second survey focusing on lung collapse. A total of 38 patients reported a pneumothorax with pregnancy, consistent with an incidence of pneumothorax in pregnancy of at least 10% (38 of 318). In one third of patients, the pneumothorax during pregnancy led to the LAM diagnosis. Pneumothoraces were almost twice as frequent on the right as on the left, and four women presented with bilateral spontaneous pneumothorax. Most pneumothoraces took place during the second and third trimesters. This study and others suggest that pregnancy is associated with pleural complications in LAM patients. Few women with a known LAM diagnosis choose to become pregnant and patients in whom LAM is diagnosed during pregnancy rarely have baseline pulmonary function tests available, complicating resolution of this question.
A pulmonary laceration can cause air to leak out of the lacerated lung and into the pleural space, if the laceration goes through to it. Pulmonary laceration invariably results in pneumothorax (due to torn airways), hemothorax (due to torn blood vessels), or a hemopneumothorax (with both blood and air in the chest cavity). Unlike hemothoraces that occur due to pulmonary contusion, those due to lung laceration may be large and long lasting. However, the lungs do not usually bleed very much because the blood vessels involved are small and the pressure within them is low. Therefore, pneumothorax is usually more of a problem than hemothorax. A pneumothorax may form or be turned into a tension pneumothorax by mechanical ventilation, which may force air out of the tear in the lung.
The laceration may also close up by itself, which can cause it to trap blood and potentially form a cyst or hematoma. Because the lung is elastic, the tear forms a round cyst called a "traumatic air cyst" that may be filled with air, blood, or both and that usually shrinks over a period of weeks or months. Lacerations that are filled with air are called pneumatoceles, and those that are filled with blood are called pulmonary hematomas. In some cases, both pneumatoceles and hematomas exist in the same injured lung. A pneumatocele can become enlarged, for example when the patient is mechanically ventilated or has acute respiratory distress syndrome, in which case it may not go away for months. Pulmonary hematomas take longer to heal than simple pneumatoceles and commonly leave the lungs scarred.
Over time, the walls of lung lacerations tend to grow thicker due to edema and bleeding at the edges.
Air in subcutaneous tissue does not usually pose a lethal threat; small amounts of air are reabsorbed by the body. Once the pneumothorax or pneumomediastinum that causes the subcutaneous emphysema is resolved, with or without medical intervention, the subcutaneous emphysema will usually clear. However, spontaneous subcutaneous emphysema can, in rare cases, progress to a life-threatening condition, and subcutaneous emphysema due to mechanical ventilation may induce ventilatory failure.
LAM is almost completely restricted to women. While lung cysts consistent with LAM are reported in some men with tuberous sclerosis, very few of these men develop symptoms. The prevalence of LAM is estimated using data from registries and patient groups and is between 3.4-7.8/million women. The number of new cases each year is between 0.23-0.31/million women/year in the US, UK and Switzerland. The variation between countries and between adjacent states in the US, suggest that a significant number of women with LAM remain either undiagnosed or their symptoms are attributed to other diseases. Adult women with tuberous sclerosis are more likely to develop LAM than women without tuberous sclerosis. Cohorts of patients with tuberous sclerosis have been screened for LAM using CT scanning. In a retrospective study of adults with tuberous sclerosis, CT demonstrated lung cysts in 42% of 95 women and 13% of 91 men. In general, lung cysts were larger and more numerous in women than in men. In a further retrospective study of women with TSC who underwent CT scanning to detect LAM, 25% of those in their 20s had lung cysts whereas 80% of women in their 40s were affected, suggesting that the development of LAM is age dependent at least in tuberous sclerosis-related LAM. Although the prevalence of tuberous sclerosis at 1 in 6000 births is much greater than that of LAM, most pulmonary clinics see more cases of sporadic than tuberous sclerosis-LAM: probably due to a combination of low levels of screening for LAM in tuberous sclerosis and in many, the absence of symptoms.
Female sex and tuberous sclerosis are the only known risk factors. Although use of supplemental estrogen is not associated with development of LAM, one study suggested that use of estrogen-containing contraceptive pills was associated with earlier onset.
It occurs in more than 30% of women with tuberous sclerosis complex (TSC-LAM), a heritable syndrome that is associated with seizures, cognitive impairment and benign tumors in multiple tissues. Most LAM patients who present for medical evaluation have the sporadic form of the disease (S-LAM), however, which is not associated with other manifestations of tuberous sclerosis complex.
Mild cystic changes consistent with LAM have been described in 10–15% of men with TSC, but symptomatic LAM in males is rare. Sporadic LAM occurs exclusively in women, with one published exception to date. Both TSC-LAM and S-LAM are associated with mutations in tuberous sclerosis genes.
Subcutaneous emphysema is a common result of certain types of surgery; for example it is not unusual in chest surgery. It may also occur from surgery around the esophagus, and is particularly likely in prolonged surgery. Other potential causes are positive pressure ventilation for any reason and by any technique, in which its occurrence is frequently unexpected. It may also occur as a result of oral surgery, laparoscopy, and cricothyrotomy. In a pneumonectomy, in which an entire lung is removed, the remaining bronchial stump may leak air, a rare but very serious condition that leads to progressive subcutaneous emphysema. Air can leak out of the pleural space through an incision made for a thoracotomy to cause subcutaneous emphysema. On infrequent occasions, the condition can result from dental surgery, usually due to use of high-speed tools that are air driven. These cases result in usually painless swelling of the face and neck, with an immediate onset, the crepitus (crunching sound) typical of subcutaneous emphysema, and often with subcutaneous air visible on X-ray.
One of the main causes of subcutaneous emphysema, along with pneumothorax, is an improperly functioning chest tube. Thus subcutaneous emphysema is often a sign that something is wrong with a chest tube; it may be clogged, clamped, or out of place. The tube may need to be replaced, or, when large amounts of air are leaking, a new tube may be added.
Since mechanical ventilation can worsen a pneumothorax, it can force air into the tissues; when subcutaneous emphysema occurs in a ventilated patient, it is an indication that the ventilation may have caused a pneumothorax. It is not unusual for subcutaneous emphysema to result from positive pressure ventilation. Another possible cause is a ruptured trachea. The trachea may be injured by tracheostomy or tracheal intubation; in cases of tracheal injury, large amounts of air can enter the subcutaneous space. An endotracheal tube can puncture the trachea or bronchi and cause subcutaneous emphysema.
It has been described in scuba divers, long distance swimmers, and breath-hold diving.
- high blood pressure
- long course length in the case of triathlon (half ironman or greater)
- female gender
- antiplatelet agents such as aspirin or fish oil
The mechanisms by which SIPE occurs are controversial, and likely multiple factors are required for the phenomenon to manifest.
- Hydrostatic pressure from water immersion squeezes the extremities, and forces blood from the peripheral circulation (arms, legs) to the central circulation (heart, lungs, great vessels of the chest)
- Cold water may cause peripheral vasoconstriction and other neuro-humoral changes that contribute to central shift of the blood volume
- Wetsuits may add additional extrinsic compression to the extremities.
- Increased pressure somewhere in the pulmonary circulation (pulmonary artery hypertension, left heart diastolic dysfunction) leads to increased pressure gradient across the pulmonary capillaries
- Capillary stress from oxidative or physical injury leads to breach
SIPE is believed to arise from a "perfect storm" of some combination of these factors, which overwhelms the ability of the body to compensate, and leads to alveolar flooding.
The most common cause of a ruptured spleen is blunt abdominal trauma, such as in traffic collisions or sports accidents. Direct, penetrating injuries, for example, stab or gunshot wounds are rare.
Non-traumatic causes are less common. These include infectious diseases, medical procedures such as colonoscopy, haematological diseases, medications, and pregnancy.
In less than one percent of cases of infectious mononucleosis splenic rupture may occur.
Lymphangiomatosis can occur at any age, but the incidence is highest in children and teenagers. Signs and symptoms are typically present before the age of 20 and the condition is often under-recognized in adults.
It affects males and females of all races and exhibits no inheritance pattern. The medical literature contains case reports from every continent.
Because it is so rare, and commonly misdiagnosed, it is not known exactly how many people are affected by this disease.
The cause of lymphangiomatosis is not yet known. As stated earlier, it is generally considered to be the result of congenital errors of lymphatic development occurring prior to the 20th week of gestation. However, the root causes of these conditions remains unknown and further research is necessary.
The spleen is an organ in the left upper quadrant of the abdomen that filters blood by removing old or damaged blood cells and platelets. While not essential to sustain life, the spleen performs protective immunological functions in the body. It also helps the immune system by destroying bacteria and other foreign substances by opsonization and phagocytosis, and by producing antibodies. It also stores approximately 33 percent of all platelets in the body.
A 1994 community-based study indicated that two out of every 100,000 people suffered from SCSFLS, while a 2004 emergency room-based study indicated five per 100,000. SCSFLS generally affects the young and middle aged; the average age for onset is 42.3 years, but onset can range from ages 22 to 61. In an 11-year study women were found to be twice as likely to be affected as men.
Studies have shown that SCSFLS runs in families and it is suspected that genetic similarity in families includes weakness in the dura mater, which leads to SCSFLS. Large scale population-based studies have not yet been conducted. While a majority of SCSFLS cases continue to be undiagnosed or misdiagnosed, an actual increase in occurrence is unlikely.
A spontaneous CSF leak is idiopathic, meaning the cause in unknown. Various scientists and physicians have suggested that this condition may be the result of an underlying connective tissue disorder affecting the spinal dura. It may also run in families and be associated with aortic aneurysms and joint hypermobility. Up to two thirds of those afflicted demonstrate some type of generalized connective tissue disorder. Marfan syndrome, Ehlers-Danlos syndrome and autosomal dominant polycystic kidney disease are the three most common connective tissue disorders associated with SCSFLS.
Roughly 20% of patients with SCSFLS exhibit features of Marfan syndrome, including tall stature, hollowed chest (pectus excavatum), joint hypermobility and arched palate. However these patients do not exhibit any other Marfan syndrome presentations.
Traumatic pneumorrhachis is a medical condition in which air has entered the spinal canal.
Traumatic pneumorrhachis is very rare phenomenon. Only eight cases with pneumorrhachis extending to more than one spinal region had been reported in the literature. Gordon had initially described the phenomenon of intraspinal air. The term "pneumorrhachis" was used for the first time by Newbold et al. The two subtypes of pneumorrhachis, which includes epidural or subarachnoid, are difficult to distinguish even with CT scanning. However, the presence of pneumocephalus goes more in favor of subarachnoid subtype. Goh and Yeo in their study have reported that the epidural pneumorrhachis is self-limited, whereas the more common subarachnoid pneumorrhachis type may be complicated by tension pneumocephalus and meningitis. Traumatic subarachnoid pneumorrhachis is almost always secondary to major trauma and is a marker of a severe injury. The pathophysiology described for it states that the penetrated air, which had led to the formation of pneumocephalus might have been forced caudally due to the raised intracranial pressure as a consequence of severe brain injury and patient's horizontal position allowing the entrapped air to pass through the foramen magnum into the spinal canal. Due to its rareness, asymptomatic presentation and myriad etiologies, no guidelines for its treatment or care has been described. Pneumorrhachis typically resolves spontaneously but occasionally it can have serious complications. Patient with subarachnoid pneumorrhachis should be treated meticulously and a temporary lumbar drainage may be required if they have concomitant cerebro-spinal fluid leak.
A cerebrospinal fluid leak (CSFL) is a medical condition where the cerebrospinal fluid(CSF) in the brain leaks out of the dura mater. This can be due to a spontaneous cerebrospinal fluid leak or result from different causes such as a lumbar puncture or physical trauma. While high CSF pressure can make lying down unbearable, low CSF pressure due to a leak can be relieved by lying flat on the back.
The most common symptoms of a CSFL is extremely high pressure in the head when sitting, standing, or bending down which can be lessened by laying down flat.
A myelogram can be used to help identify a CSFL by injecting a dye to further enhance the imaging allowing the location of the leak to be found. If it is a slow leak it may not appear on a single myelogram so more than one may be needed. Due to the ease of the procedure no anesthesia is used however a local anesthetic is given.
An epidural blood patch is the normal treatment for a CSFL, the patient's blood is drawn and it is then injected into the lumbar spine. Patients are told to lie flat without moving from 2 to 24 hours after the blood patch is done. A blood patch can be used to patch a CSFL in the cervical neck although it is rare for it to be done in that location, though it may take more than one blood patch to fully close the leak. Anesthesia is also uncommon for blood patch procedures. If you have a low pain tolerance it would be a good idea to have anesthesia for all of the procedures.
If the leak is strong or fast, the loss of CSF fluid can cause the brain to drop inside the skull due to the body's inability to replenish the CSF fluid at a quick enough pace, which would show up on a MRI of the brain. This is called a Chiari malformation where the brain is lower in the skull almost in the spinal canal.
First described by Smith (1953), and elaborated upon by Cameron et al. (1976), internal pancreatic fistulas can result in pancreatic ascites, mediastinital pseudocysts, enzymatic mediastinitis, or pancreatic pleural effusions, depending on the flow of pancreatic secretions from a disrupted pancreatic duct or leakage from a pseudocyst.
Low-output fistula: < 200 mL/day
Moderate-output fistula: 200-500 mL/day
High-output fistula: > 500 mL/day
Anasarca, edema, is a medical condition characterized by widespread swelling of the skin due to effusion of fluid into the extracellular space.
It is usually caused by liver failure (cirrhosis of the liver), renal failure/disease, right-sided heart failure, as well as severe malnutrition/protein deficiency. The increase in salt and water retention caused by low cardiac output can also result in anasarca as a long term maladaptive response.
It can also be created from the administration of exogenous intravenous fluid. Certain plant-derived anticancer chemotherapeutic agents, such as docetaxel, cause anasarca through a poorly understood capillary leak syndrome.
In Hb Barts, the high oxygen affinity results in poor oxygen delivery to peripheral tissues, resulting in anasarca.
The prognosis depends on prompt diagnosis (less than 12–24 hours and before gangrene) and the underlying cause:
- venous thrombosis: 32% mortality
- arterial embolism: 54% mortality
- arterial thrombosis: 77% mortality
- non-occlusive ischemia: 73% mortality.
In the case of prompt diagnosis and therapy, acute mesenteric ischemia can be reversible.
Penile Revascularization is a specialized vascular-surgical treatment option for Erectile Dysfunction. The 2009 International Consultation on Sexual Dysfunctions recommended that revascularization be limited to nonsmoker, nondiabetic men younger than 55 years of age with isolated stenosis of the internal pudendal artery with absence of venous leak.
Patients with persistent erectile dysfunction after revascularization may benefit from repeat penile duplex ultrasound and pelvic angiography to evalauate the status of the bypass graft and to exclude the presence of a PASS as the cause. The prevalence of an aberrant obturator artery arising from the inferior epigastric artery is approximately 10.5%. If an aberrant obturator artery is visualized arising from the inferior epigastric artery prior to surgical penile revascularization, consideration should be given toward using an alternative source artery or to embolization to avoid the creation of a Penile Artery Shunt Syndrome encountered in this described case.