Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Although CPH is often compared to cluster headaches, it is much less prevalent, occurring in only 1–3% of those who experience cluster headaches. CPH occurs roughly in 1 in 50,000 people, while cluster headaches are comparatively more common and are found in 1 in 1000 people.
Cluster headaches occur primarily in men, while CPH is more commonly diagnosed in women. The female to male ratio of diagnosed patients can range anywhere from 1.6:1 to 2.36:1. Symptoms may begin to appear at any age, but onset usually occurs in adulthood with a mean starting age within the thirties.
About 65% of persons with CH are, or have been, tobacco smokers. Stopping smoking does not lead to improvement of the condition and CH also occurs in those who have never smoked (e.g. children); it is thought unlikely that smoking is a cause. People with CH may be predisposed to certain traits, including smoking or other lifestyle habits.
Cluster headache may, but rarely, run in some families in an autosomal dominant inheritance pattern. People with a first degree relative with the condition are about 14–48 times more likely to develop it themselves, and between 1.9 and 20% of persons with CH have a positive family history. Possible genetic factors warrant further research, current evidence for genetic inheritance is limited.
A ten-patient study conducted by Pareja et al. found that all patients diagnosed with CPH were responsive to indomethacin and were able to completely control their symptoms. Doses of the drug ranged from 25 mg per day to 150 mg per day with a median dose of 75 mg per 24-hour period.
Almost all cases of CPH respond positively and effectively to indometacin, but as much as 25 percent of patients discontinued use of the drug due to adverse side effects, namely complications in the gastrointestinal tract.
According to a case study by Milanlioglu et al., 100mg of lamotrigine, an antiepileptic drug, administered twice daily alleviated all painful symptoms. No side effects were noted after two months of treatment. Dosage of lamotrigine was decreased to 50mg a day after the first two months, and no symptoms or side-effects were recorded after a three-month followup.
Use of topiramate has also been found to be an effective treatment for CPH, but cluster headache medications have been found to have little effect.
Common triggers quoted are stress, hunger, and fatigue (these equally contribute to tension headaches). Psychological stress has been reported as a factor by 50 to 80% of people. Migraines have also been associated with post-traumatic stress disorder and abuse. Migraines are more likely to occur around menstruation. Other hormonal influences, such as menarche, oral contraceptive use, pregnancy, perimenopause, and menopause, also play a role. These hormonal influences seem to play a greater role in migraine without aura. Migraines typically do not occur during the second and third trimesters or following menopause.
In general, children suffer from the same types of headaches as adults do, but their symptoms may be slightly different. The diagnostic approach to headache in children is similar to that of adults. However, young children may not be able to verbalize pain well. If a young child is fussy, they may have a headache.
Approximately 1% of Emergency Department visits for children are for headache. Most of these headaches are not dangerous. The most common type of headache seen in pediatric Emergency Rooms is headache caused by a cold (28.5%). Other headaches diagnosed in the Emergency Department include post-traumatic headache (20%), headache related to a problem with a ventriculoperitoneal shunt (a device put into the brain to remove excess CSF and reduce pressure in the brain) (11.5%) and migraine (8.5%). The most common serious headaches found in children include brain bleeds (subdural hematoma, epidural hematoma), brain abscesses, meningitis and ventriculoperitoneal shunt malfunction. Only 4–6.9% of kids with a headache have a serious cause.
Just as in adults, most headaches are benign, but when head pain is accompanied with other symptoms such as speech problems, muscle weakness, and loss of vision, a more serious underlying cause may exist: hydrocephalus, meningitis, encephalitis, abscess, hemorrhage, tumor, blood clots, or head trauma. In these cases, the headache evaluation may include CT scan or MRI in order to look for possible structural disorders of the central nervous system. If a child with a recurrent headache has a normal physical exam, neuroimaging is not recommended. Guidelines state children with abnormal neurologic exams, confusion, seizures and recent onset of worst headache of life, change in headache type or anything suggesting neurologic problems should receive neuroimaging.
When children complain of headaches, many parents are concerned about a brain tumor. Generally, headaches caused by brain masses are incapacitating and accompanied by vomiting. One study found characteristics associated with brain tumor in children are: headache for greater than 6 months, headache related to sleep, vomiting, confusion, no visual symptoms, no family history of migraine and abnormal neurologic exam.
Some measures can help prevent headaches in children. Drinking plenty of water throughout the day, avoiding caffeine, getting enough and regular sleep, eating balanced meals at the proper times, and reducing stress and excess of activities may prevent headaches. Treatments for children are similar to those for adults, however certain medications such as narcotics should not be given to children.
Children who have headaches will not necessarily have headaches as adults. In one study of 100 children with headache, eight years later 44% of those with tension headache and 28% of those with migraines were headache free. In another study of people with chronic daily headache, 75% did not have chronic daily headaches two years later, and 88% did not have chronic daily headaches eight years later.
Between 12 and 60% of people report foods as triggers. Evidence for such triggers, however, mostly relies on self-reports and is not rigorous enough to prove or disprove any particular triggers. A clear explanation for why food might trigger migraines is also lacking.
There does not appear to be evidence for an effect of tyramine on migraine. Likewise, while monosodium glutamate (MSG) is frequently reported, evidence does not consistently support that it is a dietary trigger.
Hemicrania was mentioned in 1881 in The Therapeutic Gazette Vol. 2, by G.S.Davis, and the incident has been cited in King's American Dispensatory (1898 and later editions) in the description of the strong analgesic Jamaican Dogwood, a relatively low dose of which reportedly produced convulsions and prolonged respiratory depression over six hours in an elderly woman with this condition.
In newer times, Hemicrania continua was described in 1981; at that time around 130 cases were described in the literature. However, rising awareness of the condition has led to increasingly frequent diagnosis in headache clinics, and it seems that it is not as rare as these figures would imply. The condition occurs more often in women than men and tends to present first in adulthood, although it has also been reported in children as young as 5 years old.
Approximately 64–77% of people have a headache at some point in their lives. During each year, on average, 46–53% of people have headaches. Most of these headaches are not dangerous. Only approximately 1–5% of people who seek emergency treatment for headaches have a serious underlying cause.
More than 90% of headaches are primary headaches. Most of these primary headaches are tension headaches. Most people with tension headaches have "episodic" tension headaches that come and go. Only 3.3% of adults have chronic tension headaches, with headaches for more than 15 days in a month.
Approximately 12–18% of people in the world have migraines. More women than men experience migraines. In Europe and North America, 5–9% of men experience migraines, while 12–25% of women experience migraines.
Cluster headaches are very rare. They affect only 1–3 per thousand people in the world. Cluster headaches affect approximately three times as many men as women.
The International Headache Society's International Classification of Headache Disorders classifies hemicrania continua as a primary headache disorder.
The prevalence of migraine and vertigo is 1.6 times higher in 200 dizziness clinic patients than in 200 age- and sex-matched controls from an orthopaedic clinic. Among the patients with unclassified or idiopathic vertigo, the prevalence of migraine was shown to be elevated. In another study, migraine patients reported 2.5 times more vertigo and also 2.5 more dizzy spells during headache-free periods than the controls.
MAV may occur at any age with a female:male ratio of between 1.5 and 5:1. Familial occurrence is not uncommon. In most patients, migraine headaches begin earlier in life than MAV with years of headache-free periods before MAV manifests.
In a diary study, the 1-month prevalence of MAV was 16%, frequency of MAV was higher and duration longer on days with headache, and MAV was a risk factor for co-morbid anxiety.
The pathophysiology of SUNCT is incompletely understood. Recent studies suggest the existence of a relationship between the hypothalamus and the condition.
Functional MRI and deep brain stimulation of a large patient pool showed activation of the posterior hypothalamus during attacks of primary SUNCT, on both sides and contralaterally (on the opposite side). Functional MRI studies suggest brain stem activation during attacks as well. Activation of the trigeminocervical complex and other related structures results from innervation from branches of trigeminal and upper cervical nerves.
There exists a direct connection between trigeminal nucleus caudalis, which is located in the brain stem, and the posterior hypothalamus. Therefore, it is possible that stimulation of the peripheral trigeminal nerve activates the hypothalamus and the hypothalamus in turn communicates with the trigeminal nucleus caudalis via neurotransmitters such as orexin.
Elevated levels of prolactin, secretion of which is regulated by the hypothalamus, seem to be associated with SUNCT attacks. Some patients with a pituitary tumor only experience attacks at night. These patients only exhibit higher levels of prolactin at night, even where hormone levels, including prolactin, were normal throughout the day.
SUNCT is considered a primary headache (or condition), but can also occur as a secondary symptom of other conditions. However, a patient can only be diagnosed with SUNCT as a primary condition.
A pituitary tumor causes SUNCT as a secondary headache. Some patients with a pituitary tumor complain of short-lasting heachaches. Upon removal of the tumor, the symptoms of SUNCT may disappear permanently.
Although it occurs very rarely, paranasal sinusitis can also cause secondary SUNCT. The symptoms of SUNCT in such cases can be removed permanently with endoscopic sinus surgery.
Short-lasting unilateral neuralgiform headache with conjunctival injection and tearing (SUNCT syndrome), is a rare headache disorder that belongs to the group of headaches called trigeminal autonomic cephalalgia (TACs). Symptoms include excruciating burning, stabbing, or electrical headaches mainly near the eye and typically these sensations are only on one side of the body. The headache attacks are typically accompanied by cranial autonomic signs that are unique to SUNCT. Each attack can last from five seconds to six minutes and may occur up to 200 times daily.
TACs are caused by activation of the autonomic nervous system of the trigeminal nerve in the face.
As of 2015 about 50 cases have been described in the medical literature. Onset of the symptoms usually come later in life, at an average age of about 50. Although the majority of patients are men over the age of 50, it is not uncommon to find SUNCT present among other age groups, including children and infants.
Hypnic headaches are benign primary headaches that affect the elderly, with the average age of onset being 63 ± 11 years. They are moderate, throbbing, bilateral or unilateral headaches that wake the sufferer from sleep once or multiple times a night. They typically begin a few hours after sleep begins and can last from 15–180 min. There is normally no nausea, photophobia, phonophobia or autonomic symptoms associated with the headache. They commonly occur at the same time every night possibly linking the headaches with circadian rhythm, but polysomnography has recently revealed that the onset of hypnic headaches may be associated with REM sleep.
Lithium carbonate 200–600 mg at bedtime is an effective treatment for most patients but for those that can not tolerate Lithium, Verapamil, indomethacin or methylsergilide may be tried. Two patients have also responded to flunarizine 5 mg. It has also been shown that 1–2 cups of coffee or 100–200 mg of caffeine before bed can prevent hypnic headaches.
For diagnosis of hypnic headache syndrome, headaches should occur at least 15 times per month for at least one month. Included in the differential diagnosis of a new onset nighttime headaches in the elderly is drug withdrawal, temporal arteritis, Sleep apnea, oxygen desaturated, Pheochromocytoma, intracranial causes, primary and secondary neoplasms, communicating hydrocephalus, subdural hematoma, vascular lesions, migraines, cluster headaches, chronic paroxysmal hemicrania and hypnic headache. All other causes must be ruled out before the diagnosis of hypnic headache can be made.
Trigeminal autonomic cephalgia (TAC) is the name for a type of primary headache that occurs with pain on one side of the head in the trigeminal nerve area and symptoms in autonomic systems on the same side, such as eye watering and redness or drooping eyelids. TACs include
- Cluster headache
- Paroxysmal hemicrania (chronic or episodic)
- Short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing (SUNCT)
- Short-lasting unilateral neuralgiform headache attacks with cranial autonomic symptoms (SUNA)
- Long-lasting autonomic symptoms with hemicrania (LASH)
TACs can be differentiated by the length and frequency of recurrence of the headaches.
Treatment for TACs varies depending on the exact type, but can include medication such as Indomethacin (in the case of chronic paroxysmal hemicrania) or acute and prophylactic therapy (in the case of cluster headache).
Benign paroxysmal vertigo of childhood is an uncommon neurological disorder which presents with recurrent episodes of dizziness. The presentation is usually between the ages of 2 years and 7 years of age and is characterised by short episodes of vertigo of sudden onset when the child appears distressed and unwell. The child may cling to something or someone for support. The episode lasts only minutes and resolves suddenly and completely. It is a self-limiting condition and usually resolves after about eighteen months, although many go on to experience migrainous vertigo (or vertiginous migraine) when older.
Benign paroxysmal vertigo of childhood is a migrainous phenomenon with more than 50% of those affected having a family history of migraines affecting a first-degree relative. It has no relationship to benign paroxysmal positional vertigo which is a different condition entirely.
The cause of benign paroxysmal torticollis in infants is thought to be migrainous. More than 50% of infants have a family history of migraine in first degree relatives. The cause is likely to be genetic.
Treatment of migraine-associated vertigo is the same as the treatment for migraine in general.
The mechanism of action of benign paroxysmal torticollis is not yet understood. It has been suggested that unilateral vestibular dysfunction or vascular disturbance in the brain stem may be responsible for the condition.
PEPD is an extremely rare disorder with only 15 known affected families. There are some cases, however, of individuals originally diagnosed with epilepsy who are later determined to have PEPD. This suggests that rates of PEPD may be higher than currently believed.
It is unknown as to what causes abdominal epilepsy. While a causal relationship between seizure activity and the GI symptoms has not been proven, the GI symptoms cannot be explained by other pathophysiological mechanisms, and are seen to improve upon anticonvulsant treatment. Because the condition is so rare, no high-quality studies exist. There have been too few reported cases to identify risk factors, genetic factors, or other potential causes.
There is strong evidence to show that chronic orofacial pain (including AFP) is associated with psychological factors. Sometimes stressful life events appear to precede the onset of AFP, such as bereavement or illness in a family member. Hypochondriasis, especially cancerophobia, is also often cited as being involved. Most people with AFP are "normal" people who have been under extreme stress, however other persons with AFP have neuroses or personality disorders, and a small minority have psychoses. Some have been separated from their parents as children.
Depression, anxiety and altered behavior are strongly correlated with AFP. It is argued whether this is a sole or contributing cause of AFP, or the emotional consequences of suffering with chronic, unrelieved pain. It has been suggested that over 50% of people with AFP have concomitant depression or hypochondria. Furthermore, about 80% of persons with psychogenic facial pain report other chronic pain conditions such as listed in the table.
The voltage-gated sodium channel Na1.7 is expressed in nociceptive and sympathetic neurons, where it aids in action potential creation and regulation. The mutations in this gene that have received study all alter the channel's ability to inactivate. Sodium channel inactivation is vital for the proper cessation of action potentials. The decreased inactivation caused by these mutations, then, is expected to cause prolonged action potentials and repetitive firing. Such altered firing will cause increased pain sensation and increased sympathetic nervous system activity, producing the phenotype observed in patients with PEPD.
Abdominal epilepsy, also known as autonomic epilepsy, is a rare condition most frequently found in children, consisting of gastrointestinal (GI) disturbances caused by epileptiform seizure activity.
It has been described as a type of temporal lobe epilepsy. Responsiveness to anticonvulsants can aid in the diagnosis.
Most published medical literature dealing with abdominal epilepsy is in the form of individual case reports. A 2005 review article found a total of 36 cases described in the medical literature.
Abdominal aura (also known as visceral aura and epigastric aura) is used to denote a type of somatosensory or somaesthetic aura that typically manifests itself as a rising epigastric sensation. The term is indebted to the Latin words abdomen (belly) and aura (wind, smell).
Other presentations of the abdominal aura include viscerosensitive sensations such as abdominal discomfort, visceromotor symptoms presenting in the form of tachycardia, borborygmi or vomiting, and vegetative symptoms such as blushing and sweating.
Pathophysiologically, the abdominal aura is associated with aberrant neuronal discharges in sensory cortical areas representing the abdominal viscera. Etiologically, it is associated primarily with paroxysmal neurological disorders such as migraine and epilepsy. The abdominal aura can be classified as a somatic or coenesthetic hallucination.
The term is used in opposition to various terms denoting other types of somatosensory aura, notably splitting of the body image and paraesthesia.