Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In lack of pharmacological treatment, people with SMA tend to deteriorate over time. Recently, survival has increased in severe SMA patients with aggressive and proactive supportive respiratory and nutritional support.
The majority of children diagnosed with SMA type 0 and I do not reach the age of IV, recurrent respiratory problems being the primary cause of death. With proper care, milder SMA type I cases (which account for approx. 10% of all SMA1 cases) live into adulthood. Long-term survival in SMA type I is not sufficiently evidenced; however, recent advances in respiratory support seem to have brought down mortality.
In SMA type II, the course of the disease is slower to progress and life expectancy is less than the healthy population. Death before the age of 20 is frequent, although many people with SMA live to become parents and grandparents. SMA type III has normal or near-normal life expectancy if standards of care are followed. Type IV, adult-onset SMA usually means only mobility impairment and does not affect life expectancy.
In all SMA types, physiotherapy has been shown to delay the progress of disease.
Routine prenatal or neonatal screening for SMA is controversial, because of the cost, and because of the severity of the disease. Some researchers have concluded that population screening for SMA is not cost-effective, at a cost of $5 million per case averted in the United States as of 2009. Others conclude that SMA meets the criteria for screening programs and relevant testing should be offered to all couples. The major argument for neonatal screening is that in SMA type I, there is a critical time period in which to initiate therapies to reduce loss of muscle function and proactive treatment in regards to nutrition.
A 2006 study followed 223 patients for a number of years. Of these, 15 died, with a median age of 65 years. The authors tentatively concluded that this is in line with a previously reported estimate of a shortened life expectancy of 10-15 years (12 in their data).
DSMA1 is usually fatal in early childhood. The patient, normally a child, suffers a progressive degradation of the respiratory system until respiratory failure. There is no consensus on the life expectancy in DSMA1 despite a number of studies being conducted. A small number of patients survive past two years of age but they lack signs of diaphragmatic paralysis or their breathing is dependent on a ventilation system.
The disease has only been identified as distinct from SMA recently, so research is still experimental, taking place mostly in animal models. Several therapy pathways have been devised which include gene therapy, whereby an "IGHMBP2" transgene is delivered to the cell using a viral vector; small-molecule drugs like growth factors (e.g., IGF-1 and VEGF) or olesoxime; and transplantation of healthy motor neurons grown "in vitro" from the patient's stem cells. Studies in amyotrophic lateral sclerosis are also considered helpful because the condition is relatively similar to SMARD1.
Distal spinal muscular atrophy type 2 (DSMA2), also known as Jerash type distal hereditary motor neuropathy (HMN-J) — is a very rare childhood-onset genetic disorder characterised by progressive muscle wasting affecting lower and subsequently upper limbs. The disorder has been described in Arab inhabitants of Jerash region in Jordan as well as in a Chinese family.
The condition is linked to a genetic mutation in the "SIGMAR1" gene on chromosome 19 (locus 19p13.3) and is likely inherited in an autosomal recessive manner.
X-linked spinal muscular atrophy type 2 (SMAX2, XLSMA), also known as arthrogryposis multiplex congenita X-linked type 1 (AMCX1), is a rare neurological disorder involving death of motor neurons in the anterior horn of spinal cord resulting in generalised muscle wasting (atrophy). The disease is caused by a mutation in "UBA1" gene and is passed in a X-linked recessive manner by carrier mothers to affected sons.
Affected babies have general muscle weakness, weak cry and floppy limbs; consequently, the condition is usually apparent at or even before birth. Symptoms resemble the more severe forms of the more common spinal muscular atrophy (SMA); however, SMAX2 is caused by a different genetic defect and only genetic testing can correctly identify the disease.
The disorder is usually fatal in infancy or early childhood due to progressive respiratory failure, although survival into teenage years have been reported. As with many genetic disorders, there is no known cure to SMAX2. Appropriate palliative care may be able to increase quality of life and extend lifespan.
Congenital distal spinal muscular atrophy is caused by a mutation of the "TRPV4" gene found on the 12q23-12q24.1. The mutation causes an affected individual to have lower levels of "TRPV4" expression. This deficiency can lead to abnormal osmotic regulation. Congenital dSMA is genetically heterogeneous, meaning a mutation on this gene can cause a plethora of other phenotypically related or phenotypically unrelated diseases depending on the region that is mutated.
The overall incidence of myotubular myopathy is 1 in 50,000 male live births. The incidence of other centronuclear myopathies is extremely rare, with there only being nineteen families identified with CNM throughout the world. The symptoms currently range from the majority who only need to walk with aids, from a stick to a walking frame, to total dependence on physical mobility aids such as wheelchairs and stand aids, but this latter variety is so rare that only two cases are known to the CNM "community".
Approximately 80% of males with a diagnosis of myotubular myopathy by muscle biopsy will have a mutation in MTM1 identifiable by genetic sequence analysis.
Many patients with myotubular myopathy die in infancy prior to receiving a formal diagnosis. When possible, muscle biopsy and genetic testing may still be helpful even after a neonatal death, since the diagnostic information can assist with family planning and genetic counseling as well as aiding in the accurate diagnosis of any relatives who might also have the same genetic abnormality.
Congenital distal spinal muscular atrophy (congenital dSMA) is a hereditary genetic condition characterized by muscle wasting (atrophy), particularly of distal muscles in legs and hands, and by early-onset contractures (permanent shortening of a muscle or joint) of the hip, knee, and ankle. Affected individuals often have shorter lower limbs relative to the trunk and upper limbs. The condition is a result of a loss of anterior horn cells localized to lumbar and cervical regions of the spinal cord early in infancy, which in turn is caused by a mutation of the "TRPV4" gene. The disorder is inherited in an autosomal dominant manner. Arm muscle and function, as well as cardiac and respiratory functions are typically well preserved.
MMA mostly occurs in males between the ages of 15 and 25. Onset and progression are slow. MMA is seen most frequently in Asia, particularly in Japan and India; it is much less common in North America.
Spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME), sometimes called Jankovic–Rivera syndrome, is a very rare neurodegenerative disease whose symptoms include slowly progressive muscle wasting (atrophy), predominantly affecting distal muscles, combined with denervation and myoclonic seizures.
SMA-PME is associated with a missense mutation (c.125C→T) or deletion in exon 2 of the "ASAH1" gene and is inherited in an autosomal recessive manner. As with many genetic disorders, there is no known cure to SMA-PME.
The condition was first described in 1979 by American researchers Joseph Jankovic and Victor M. Rivera.
The clinical course of BVVL can vary from one patient to another. There have been cases with progressive deterioration, deterioration followed by periods of stabilization, and deterioration with abrupt periods of increasing severity.
The syndrome has previously been considered to have a high mortality rate but the initial response of most patients to the Riboflavin protocol are very encouraging and seem to indicate a significantly improved life expectancy could be achievable. There are three documented cases of BVVL where the patient died within the first five years of the disease. On the contrary, most patients have survived more than 10 years after the onset of their first symptom, and several cases have survived 20–30 years after the onset of their first symptom.
Families with multiple cases of BVVL and, more generally, multiple cases of infantile progressive bulbar palsy can show variability in age of disease onset and survival. Dipti and Childs described such a situation in which a family had five children that had Infantile PBP. In this family, three siblings showed sensorineural deafness and other symptoms of BVVL at an older age. The other two siblings showed symptoms of Fazio-Londe disease and died before the age of two.
In post-menopausal women, the walls of the vagina become thinner (atrophic vaginitis). The mechanism for the age-related condition is not yet clear, though there are theories that the effect is caused by decreases in estrogen levels. This atrophy, and that of the breasts concurrently, is consistent with the homeostatic (normal development) role of atrophy in general, as after menopause the body has no further functional biological need to maintain the reproductive system which it has permanently shut down.
Fazio–Londe disease is linked to a genetic mutation in the "SLC52A3" gene on chromosome 20 (locus: 20p13). It is allelic and phenotypically similar to Brown–Vialetto–Van Laere syndrome.
The condition is inherited in an autosomal recessive manner.
The gene encodes the intestinal riboflavin transporter (hRFT2).
Spinal muscular atrophy with lower extremity predominance (SMA-LED) is an extremely rare neuromuscular disorder of infants characterised by severe progressive muscle atrophy which is especially prominent in legs.
The disorder is associated with a genetic mutation in the "DYNC1H1" gene (the gene responsible also for one of the axonal types of Charcot–Marie–Tooth disease) and is inherited in an autosomal dominant manner. As with many genetic disorders, there is no known cure to SMA-LED.
The condition was first described in a multi-generational family by Walter Timme in 1917. Its linkage to the "DYNC1H1" gene was discovered in 2010 by M. B. Harms, et al., who also proposed the current name of the disorder.
One drug in test seemed to prevent the type of muscle loss that occurs in immobile, bedridden patients.
Testing on mice showed that it blocked the activity of a protein present in the muscle that is involved in muscle atrophy. However, the drug's long-term effect on the heart precludes its routine use in humans, and other drugs are being sought.
Centronuclear myopathies (CNM) are a group of congenital myopathies where cell nuclei are abnormally located in skeletal muscle cells. In CNM the nuclei are located at a position in the center of the cell, instead of their normal location at the periphery.
Symptoms of CNM include severe hypotonia, hypoxia-requiring breathing assistance, and scaphocephaly. Among centronuclear myopathies, the X-linked myotubular myopathy form typically presents at birth, and is thus considered a congenital myopathy. However, some centronuclear myopathies may present later in life.
The disorder has been associated with various mutations in the SLC52A2 and "SLC52A3" genes. This gene is thought to be involved in transport of riboflavin.
BVVL is allelic and phenotypically similar to Fazio–Londe disease and likewise is inherited in an autosomal recessive manner.
In regards to the diagnosis of spinal and bulbar muscular atrophy, the "AR Xq12" gene is the focus. Many mutations are reported and identified as missense/nonsense, that can be identified with 99.9% accuracy. Test for this gene in the majority of affected patients yields the diagnosis.
The TK2 related myopathic form results in muscle weakness, rapidly progresses, leading to respiratory failure and death within a few years of onset. The most common cause of death is pulmonary infection. Only a few people have survived to late childhood and adolescence.
SUCLA2 and RRM2B related forms result in deformities to the brain. A 2007 study based on 12 cases from the Faroe Islands (where there is a relatively high incidence due to a founder effect) suggested that the outcome is often poor with early lethality. More recent studies (2015) with 50 people with SUCLA2 mutations, with range of 16 different mutations, show a high variability in outcomes with a number of people surviving into adulthood (median survival was 20 years. There is significant evidence (p = 0.020) that people with missense mutations have longer survival rates, which might mean that some of the resulting protein has some residual enzyme activity.
RRM2B mutations have been reported in 16 infants with severe encephalomyopathic MDS that is associated with early-onset (neonatal or infantile), multi-organ presentation, and mortality during infancy.
The genetics of congenital muscular dystrophy are autosomal recessive which means two copies of an abnormal gene must be present
for the disease or trait to happen. In the case of collagen VI-deficient, it is autosomal dominant, which means a child could inherit the disease from only one copy of a gene present in only one parent.
The prevalence for congenital muscular dystrophy seems to be between 2.6-4.5 in 10,000 according to Reed, 2009. MDCIA, for example is due to a mutation in the LAMA-2 gene and is involved with the 6q2 chromosome.
Fazio–Londe disease (FLD), also called progressive bulbar palsy of childhood, is a very rare inherited motor neuron disease of children and young adults and is characterized by progressive paralysis of muscles innervated by cranial nerves.
Several gene mutations have been identified in patients with camptocormia. These include the RYR1 gene in axial myopathy, the DMPK gene in myotonic dystrophy, and genes related to dysferlinopathy and Parkinson’s disease. These genes could serve as targets for gene therapy to treat the condition in the years to come.