Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The environmental exposures that contribute to emergence of ALL is contentious and a subject of ongoing debate.
High levels of radiation exposure from nuclear fallout is a known risk factor for developing leukemia. Evidence whether less radiation, as from x-ray imaging during pregnancy, increases risk of disease remains inconclusive. Studies that have identified an association between x-ray imaging during pregnancy and ALL found only a slightly increased risk. Exposure to strong electromagnetic radiation from power lines has also been associated with a slightly increased risk of ALL. This result is questioned as no causal mechanism linking electromagnetic radiation with cancer is known.
High birth weight (greater than 4000g or 8.8lbs) is also associated with a small increased risk. The mechanism connecting high birth weight to ALL is also not known.
Evidence suggests that secondary leukemia can develop in individuals treated with certain types of chemotherapy, such as epipodophyllotoxins and cyclophosphamide.
Leukemia is rarely associated with pregnancy, affecting only about 1 in 10,000 pregnant women. How it is handled depends primarily on the type of leukemia. Acute leukemias normally require prompt, aggressive treatment, despite significant risks of pregnancy loss and birth defects, especially if chemotherapy is given during the developmentally sensitive first trimester.
This rare form of leukemia is more common among Asians in comparison to other ethnic groups. It is typically diagnosed in adolescents and young adults, with a slight predominance in males.
Leukemia is rarely associated with pregnancy, affecting only about 1 in 10,000 pregnant women. How it is handled depends primarily on the type of leukemia. Nearly all leukemias appearing in pregnant women are acute leukemias. Acute leukemias normally require prompt, aggressive treatment, despite significant risks of pregnancy loss and birth defects, especially if chemotherapy is given during the developmentally sensitive first trimester. Chronic myelogenous leukemia can be treated with relative safety at any time during pregnancy with Interferon-alpha hormones. Treatment for chronic lymphocytic leukemias, which are rare in pregnant women, can often be postponed until after the end of the pregnancy.
MBL has been found in less than 1% of asymptomatic adults under age 40, and in around 5% of adults older than 60. Exact numbers depend on the population studied and the sensitivity of the diagnostic technique.
Like CLL, it appears to be more common in males.
It is also a common finding among older adults with unexplained lymphocytosis.
Recent studies suggest that CLL is very often preceded by MBL,
and that MBL progresses to CLL requiring treatment at a rate of around 1-2% per year. Advancing age and high initial B cell count predispose to progression from MBL to CLL; however, only a small fraction of people with MBL die because of CLL.
Thus, MBL could be regarded as a premalignant condition from which some cases progress to CLL (much similar to the progression of some cases of monoclonal gammopathy of undetermined significance to multiple myeloma).
No treatment is required, but follow-up might be able to detect new diagnoses of CLL. However, this might lead to increased costs, repeated investigations, unnecessary anxiety about cancer and health insurance concerns, while there is no means to prevent progression to CLL.
JMML accounts for 1-2% of childhood leukemias each year; in the United States, an estimated 25-50 new cases are diagnosed each year, which also equates to about 3 cases per million children. There is no known environmental cause for JMML. Since about 10% of patients are diagnosed before 3 months of age, it is thought that JMML is a congenital condition in these infants
The 5 year survival has been noted as 89% in at least one study from France of 201 patients with T-LGL leukemia.
Leukemia is rarely associated with pregnancy, affecting only about 1 in 10,000 pregnant women. The management of leukemia in a pregnant patient depends primarily on the type of leukemia. Acute leukemias normally require prompt, aggressive treatment, despite significant risks of pregnancy loss and birth defects, especially if chemotherapy is given during the developmentally sensitive first trimester.
Novel approaches to the treatment of PTCL in the relapsed or refractory setting are under investigation. Pralatrexate is one compound currently under investigations for the treatment of PTCL.
T-PLL is an extremely rare aggressive disease, and patients are not expected to live normal lifespans. Before the recent introduction of better treatments, such as alemtuzumab, the median survival time was 7.5 months after diagnosis. More recently, some patients have survived five years and more, although the median survival is still low.
High amounts of ionizing radiation exposure can increase the risk of AML. Survivors of the atomic bombings of Hiroshima and Nagasaki had an increased rate of AML, as did radiologists exposed to high levels of X-rays prior to the adoption of modern radiation safety practices. People treated with ionizing radiation after treatment for prostate cancer, non-Hodgkin lymphoma, lung cancer, and breast cancer have the highest chance of acquiring AML, but this increased risk returns to the background risk observed in the general population after 12 years.
About four men are diagnosed with this disease for every three women. Despite its overall rarity, it is also the most common type of mature T cell leukemia.
Of all cancers involving the same class of blood cell, 2.3% of cases are Burkitt lymphoma. Epstein-Barr virus infection is strongly correlated with this cancer.
Little is yet known about the causes of MBL, but as it is a "forme fruste" of CLL the etiologies of these two conditions would be closely related. Genetic changes that can be found in CLL have also been found in MBL, and relatives of people with CLL have a much higher chance of having MBL (13% of first-degree relatives in one study).
One concern about MBL is related to blood transfusions. MBL was found in 0.14% of blood donors in one study. It is unknown whether blood transfusion can transmit MBL.
CLL is primarily a disease of older adults, with a median age of 70 years at the time of diagnosis. Though less common, CLL sometimes affects people between 30 and 39 years of age. The incidence of CLL increases very quickly with increasing age.
In the United States during 2014, about 15,720 new cases are expected to be diagnosed, and 4,600 patients are expected to die from CLL. Because of the prolonged survival, which was typically about 10 years in past decades, but which can extend to a normal life expectancy, the prevalence (number of people living with the disease) is much higher than the incidence (new diagnoses). CLL is the most common type of leukemia in the UK, accounting for 38% of all leukemia cases. Approximately 3,200 people were diagnosed with the disease in 2011.
In Western populations, subclinical "disease" can be identified in 3.5% of normal adults, and in up to 8% of individuals over the age of 70. That is, small clones of B cells with the characteristic CLL phenotype can be identified in many healthy elderly persons. The clinical significance of these cells is unknown.
In contrast, CLL is rare in Asian countries, such as Japan, China, and Korea, accounting for less than 10% of all leukemias in those regions. A low incidence is seen in Japanese immigrants to the US, and in African and Asian immigrants to Israel.
Of all cancers involving the same class of blood cell, 7% of cases are CLL/SLL.
Rates of CLL are somewhat elevated in people exposed to certain chemicals. Under U.S. Department of Veterans' Affairs regulations, Vietnam veterans who served in-country or in the inland waterways of Vietnam and who later develop CLL are presumed to have contracted it from exposure to Agent Orange and may be entitled to compensation.
CML accounts for 8% of all leukaemias in the UK, and around 680 people were diagnosed with the disease in 2011.
Some people have a genetic predisposition towards developing leukemia. This predisposition is demonstrated by family histories and twin studies. The affected people may have a single gene or multiple genes in common. In some cases, families tend to develop the same kinds of leukemia as other members; in other families, affected people may develop different forms of leukemia or related blood cancers.
In addition to these genetic issues, people with chromosomal abnormalities or certain other genetic conditions have a greater risk of leukemia. For example, people with Down syndrome have a significantly increased risk of developing forms of acute leukemia (especially acute myeloid leukemia), and Fanconi anemia is a risk factor for developing acute myeloid leukemia. Mutation in SPRED1 gene has been associated with a predisposition to childhood leukemia.
Chronic myelogenous leukemia is associated with a genetic abnormality called the Philadelphia translocation; 95% of people with CML carry the Philadelphia mutation, although this is not exclusive to CML and can be observed in people with other types of leukemia.
Exposure to anticancer chemotherapy, in particular alkylating agents, can increase the risk of subsequently developing AML. The risk is highest about three to five years after chemotherapy. Other chemotherapy agents, specifically epipodophyllotoxins and anthracyclines, have also been associated with treatment-related leukemias, which are often associated with specific chromosomal abnormalities in the leukemic cells.
Occupational chemical exposure to benzene and other aromatic organic solvents is controversial as a cause of AML. Benzene and many of its derivatives are known to be carcinogenic "in vitro". While some studies have suggested a link between occupational exposure to benzene and increased risk of AML, others have suggested the attributable risk, if any, is slight.
The exact cause of most cases of childhood leukemia is not known. Most children with leukemia do not have any known risk factors. The immune system plays an important role in protecting the body's immune system. An alteration or defect in the immune system may increase the risk for developing cancer. The immune system can be damaged by different factors, such as exposure to different viruses, environmental factors, chemical factors and other various infections.
There also appears to be some evidence linking childhood leukemia to x-ray exposure. In a 2010 study by the University of California, Berkeley’s School of Public Health, researchers found that children with acute lymphoid leukemia (ALL) had almost twice the chance of having been exposed to three or more X-rays compared with children who did not have leukemia.
Prognosis depends on the subtype. Some subtypes have a median survival of 6–8 years, while others have a median survival of 22 years (which is a normal lifespan for older patients). Telomere length has been suggested to be a valuable prognostic indicator of survival.
As with many cancers, the cause of hairy cell leukemia is unknown. Exposure to tobacco smoke, ionizing radiation, or industrial chemicals (with the possible exception of diesel) does not appear to increase the risk of developing HCL. Farming and gardening appear to increase the risk of HCL in some studies.
Recent studies have identified somatic BRAF V600E mutations in all patients with the classic form of hairy cell leukemia thus sequenced, but in no patients with the variant form.
The U.S. Institute of Medicine (IOM) announced "sufficient evidence" of an association between exposure to herbicides and later development of chronic B-cell leukemias and lymphomas in general. The IOM report emphasized that neither animal nor human studies indicate an association of herbicides with HCL specifically. However, the IOM extrapolated data from chronic lymphocytic leukemia and non-Hodgkin lymphoma to conclude that HCL and other rare B-cell neoplasms may share this risk factor. As a result of the IOM report, the U.S. Department of Veterans Affairs considers HCL an illness presumed to be a service-related disability (see Agent Orange).
Human T-lymphotropic virus 2 (HTLV-2) has been isolated in a small number of patients with the variant form of HCL. In the 1980s, HTLV-2 was identified in a patient with a T-cell lymphoproliferative disease; this patient later developed hairy cell leukemia (a B cell disease), but HTLV-2 was not found in the hairy cell clones. There is no evidence that HTLV-II causes any sort of hematological malignancy, including HCL.
This disease is rare, with fewer than 1 in 10,000 people being diagnosed with HCL during their lives. Men are four to five times more likely to develop hairy cell leukemia than women. In the United States, the annual incidence is approximately 3 cases per 1,000,000 men each year, and 0.6 cases per 1,000,000 women each year.
Most patients are white males over the age of 50, although it has been diagnosed in at least one teenager. It is less common in people of African and Asian descent compared to people of European descent.
It does not appear to be hereditary, although occasional familial cases that suggest a predisposition have been reported, usually showing a common Human Leukocyte Antigen (HLA) type.
T-LGLL is a rare form of leukemia, comprising 2-3% of all cases of chronic lymphoproliferative disorders.
Of all cancers involving the same class of blood cell, 2% of cases are cutaneous T cell lymphomas. CTCL is more common in men and in African-American people. The incidence of CTCL in men is 1.6 times higher than in women.
There is some evidence of a relationship with human T-lymphotropic virus (HTLV) with the adult T-cell leukemia/lymphoma subtype. No definitive link between any viral infection or environmental factor has been definitely shown with other CTCL subtypes.
Pralatrexate is one compound currently under investigations for the treatment of PTCL.