Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Campomelic dysplasia has a reported incidence of 0.05-0.09 per 10000 live births.
In nearly 95% of the cases, death occurs in the neonatal period due to respiratory distress, generally related to small chest size or insufficient development of the trachea and other upper airway structures.
Among survivors of CMD, the skeletal malformations change over time to include worsening scoliosis or kyphosis resulting in decreased trunk size relative to the limb length. Neurological damage is also often seen including mental retardation and deafness. Even among survivors of the prenatal period, CMD patients have shortened life spans due to lifelong respiratory issues. Those patients with ambiguous genitalia or sex reversal at birth, of course, maintain that state, and are either sterile or have reduced fertility.
Patients with CHH usually suffer from cellular immunodeficiency. In the study of 108 Finnish patients with CHH there was detected mild to moderate form of lymphopenia, decreased delayed type of hypersensitivity and impaired responses to phytohaemagglutinin. This leads to susceptibility to and, in some more severe cases, mortality from infections early in childhood. There has also been detected combined immunodeficiency in some patients
Patients with CHH often have increased predispositions to malignancies.
Early journal reports of boomerang dysplasia suggested X-linked recessive inheritance, based on observation and family history. It was later discovered, however, that the disorder is actually caused by a genetic mutation fitting an autosomal dominant genetic profile.
Autosomal dominant inheritance indicates that the defective gene responsible for a disorder is located on an autosome, and only one copy of the gene is sufficient to cause the disorder, when inherited from a parent who has the disorder.
Boomerang dysplasia, although an autosomal dominant disorder, is "not" inherited because those afflicted do not live beyond infancy. They cannot pass the gene to the next generation.
Achondrogenesis is a number of disorders that are the most severe form of congenital chondrodysplasia (malformation of bones and cartilage). These conditions are characterized by a small body, short limbs, and other skeletal abnormalities. As a result of their serious health problems, infants with achondrogenesis are usually born prematurely, are stillborn, or die shortly after birth from respiratory failure. Some infants, however, have lived for a while with intensive medical support.
Researchers have described at least three forms of achondrogenesis, designated as Achondrogenesis type 1A, achondrogenesis type 1B and achondrogenesis type 2. These types are distinguished by their signs and symptoms, inheritance pattern, and genetic cause. Other types of achondrogenesis may exist, but they have not been characterized or their cause is unknown.
Achondrogenesis type 1A is caused by a defect in the microtubules of the Golgi apparatus. In mice, a nonsense mutation in the thyroid hormone receptor interactor 11 gene (Trip11), which encodes the Golgi microtubule-associated protein 210 (GMAP-210), resulted in defects similar to the human disease. When their DNA was sequenced, human patients with achondrogenesis type 1A also had loss-of-function mutations in GMAP-210. GMAP-210 moves proteins from the endoplasmic reticulum to the Golgi apparatus. Because of the defect, GMAP-210 is not able to move the proteins, and they remain in the endoplasmic reticulum, which swells up. The loss of Golgi apparatus function affects some cells, such as those responsible for forming bone and cartilage, more than others.
Achondrogenesis type 1B is caused by a similar mutation in SLC26A2, which encodes a sulfate transporter.
Treatment is symptomatic, often addressing indicators associated with peripheral pulmonary artery stenosis. Laryngotracheal calcification resulting in dyspnea and forceful breathing can be treated with bronchodilators including the short and long-acting β2-agonists, and various anticholinergics. Prognosis is good, yet life expectancy depends on the severity and extent of diffuse pulmonary and arterial calcification.
This condition is a consequence of mutations in the PEX7 gene, GNPAT gene (which is located on chromosome 1) and AGPS gene, the condition is acquired in a autosomal recessive manner.
The mechanism of rhizomelic chondrodysplasia punctata in the case of "type 1" of this condition one finds that peroxisome objective is PEX7, in peroxisome assembly.There are 3 pathways that "count on" PEX7 and are:
Majewski's polydactyly syndrome, also known as polydactyly with neonatal chondrodystrophy type I, short rib-polydactyly syndrome type II, and short rib-polydactyly syndrome, is a lethal form of neonatal dwarfism characterized by osteochondrodysplasia (skeletal abnormalities in the development of bone and cartilage) with a narrow thorax, polysyndactyly, disproportionately short tibiae, thorax dysplasia, hypoplastic lungs and respiratory insufficiency. Associated anomalies include protruding abdomen, brachydactyly, peculiar faces, hypoplastic epiglottis, cardiovascular defects, renal cysts, and also genital anomalies. Death occurs before or at birth.
The disease is inherited in an autosomal recessive pattern.
It was characterized in 1971.
Boomerang dysplasia is a lethal form of osteochondrodysplasia known for a characteristic congenital feature in which bones of the arms and legs are malformed into the shape of a boomerang. Death usually occurs in early infancy due to complications arising from overwhelming systemic bone malformations.
Osteochondrodysplasias are skeletal disorders that cause malformations of both bone and cartilage.
Schmid metaphyseal chondrodysplasia is a type of chondrodysplasia associated with a deficiency of collagen, type X, alpha 1.
Unlike other "rickets syndromes", affected individuals have normal serum calcium, phosphorus, and urinary amino acid levels. Long bones are short and curved, with widened growth plates and metaphyses.
It is named for the German researcher F. Schmid, who characterized it in 1949.
Chondrodysplasia Blomstrand (also known as Blomstrand's lethal chondrodysplasia) is a rare disorder caused by mutation of the parathyroid hormone receptor resulting in the absence of a functioning PTHR1. It results in ossification of the endocrine system and intermembraneous tissues and advanced skeletal maturation
The prognosis is poor; affected individuals are either stillborn or die shortly after birth. The longest survival reported in literature is of 134 days.
This syndrome is transmitted as an autosomal recessive disorder and there is a risk for recurrence of 25% in future pregnancies.
Cartilage–hair hypoplasia (CHH), also known as McKusick type metaphyseal chondrodysplasia, is a rare genetic disorder. It is a highly pleiotropic disorder that clinically manifests by form of short-limbed dwarfism due to skeletal dysplasia, variable level of immunodeficiency and predisposition to malignancies in some cases. It was first reported in 1965 by McKusick et al. Actor Verne Troyer is affected with this form of dwarfism, as was actor Billy Barty, who was renowned for saying "The name of my condition is Cartilage Hair Syndrome Hypoplasia, but you can just call me Billy."
Chondrodysplasia punctata is a clinically and genetically diverse group of rare diseases, first described by Erich Conradi (1882–1968), that share the features of stippled epiphyses and skeletal changes.
Types include:
- Rhizomelic chondrodysplasia punctata , ,
- X-linked recessive chondrodysplasia punctata
- Conradi-Hünermann syndrome
- Autosomal dominant chondrodysplasia punctata
The inheritance of Impossible syndrome is suspected to be autosomal recessive, which means the affected gene is located on an autosome, and two copies of the gene - one from each parent - are required to have an infant with the disorder.
While the definitive presentation of the disease is a patient having bowed lower limbs and sex reversal in 46,XY males, there are other clinical criteria that can be used, absent these characteristics, to make the diagnosis. Patients may present with underdeveloped shoulder blades, shortened and angulated lower limbs, a vertically oriented and narrow pelvis, an enlarged head, an undersized jaw, cleft palate, flat nasal bridge, low set ears, club feet, dislocated hips, 11 pairs of ribs instead of 12, or bone abnormalities in the neck and spine. Respiratory distress can be caused by an underdeveloped trachea which collapses on inhalation or by insufficient rib cage development.
Keutel syndrome (KS) is a rare autosomal recessive genetic disorder characterized by abnormal diffuse cartilage calcification, hypoplasia of the mid-face, peripheral pulmonary stenosis, hearing loss, short distal phalanges (tips) of the fingers and mild mental retardation. Individuals with KS often present with peripheral pulmonary stenosis, brachytelephalangism, sloping forehead, midface hypoplasia, and receding chin. It is associated with abnormalities in the gene coding for matrix gla protein (MGP). Being an autosomal recessive disorder, it may be inherited from two unaffected, abnormal MGP-carrying parents. Thus, people who inherit two affected MGP genes will likely inherit KS.
It was first identified in 1972 as a novel rare genetic disorder sharing similar symptoms with chondrodysplasia punctata. Multiple forms of chondrodysplasia punctata share symptoms consistent with KS including abnormal cartilage calcification, forceful respiration, brachytelephalangism, hypotonia, psychomotor delay, and conductive deafness, yet peripheral pulmonary stenosis remains unique to KS.
No chromosomal abnormalities are reported in affected individuals, suggesting that familial consanguinity relates to the autosomal recessive mode of inheritance. Also, despite largely abnormal calcification of regions including the larynx, tracheobronchial tree, nose, pinna (anatomy), and epiglottis, patients exhibit normal serum calcium and phosphate levels.
Jansen's metaphyseal chondrodysplasia (JMC) is a disease that results from ligand-independent activation of the type 1 of the parathyroid hormone receptor (PTHR1), due to one of three reported mutations (activating mutation).
JMC is extremely rare, and as of 2007 there are fewer than 20 reported cases worldwide.
X-linked recessive chondrodysplasia punctata is a type of chondrodysplasia punctata that can involve the skin, hair, and cause short stature with skeletal abnormalities, cataracts, and deafness.
This condition is also known as arylsulfatase E deficiency, CDPX1, and X-linked recessive chondrodysplasia punctata 1. The syndrome rarely affects females, but they can be carriers of the recessive allele. Although the exact number of people diagnosed with CDPX1 is unknown, it was estimated that 1 in 500,000 have CDPX1 in varying severity. This condition is not linked to a specific ethnicity. The mutation that leads to a deficiency in arylsulfatase E. (ARSE) occurs in the coding region of the gene.Absence of stippling, deposits of calcium, of bones and cartilage, shown on x-ray, does not rule out chondrodysplasia punctata or a normal chondrodysplasia punctata 1 (CDPX1) gene without mutation. Stippling of the bones and cartilage is rarely seen after childhood. Phalangeal abnormalities are important clinical features to look for once the stippling is no longer visible. Other, more severe, clinical features include respiratory abnormalities, hearing loss, cervical spine abnormalities, delayed cognitive development, ophthalmologic abnormalities, cardiac abnormalities, gastroesophageal reflux, and feeding difficulties. CDPX1 actually has a spectrum of severity; different mutations within the CDPX1 gene have different effects on the catalytic activity of the ARSE protein. The mutations vary between missense, nonsense, insertions, and deletions.
Melnick–Needles syndrome (MNS), also known as Melnick–Needles osteodysplasty, is an extremely rare congenital disorder that affects primarily bone development. Patients with Melnick–Needles syndrome have typical faces (exophthalmos, full cheeks, micrognathia and malalignment of teeth), flaring of the metaphyses of long bones, s-like curvature of bones of legs, irregular constrictions in the ribs, and sclerosis of base of skull.
In males, the disorder is nearly always lethal in infancy. Lifespan of female patients might not be affected.
Melnick–Needles syndrome is associated with mutations in the "FLNA" gene and is inherited in an X-linked dominant manner. As with many genetic disorders, there is no known cure to MNS.
The disorder was first described by John C. Melnick and Carl F. Needles in 1966 in two multi-generational families.
Weissenbacher-Zweymüller syndrome affects males and females in the same numbers. About 30 cases have been reported in medical literature. This disorder can be underdiagnosed causing no true frequency in the population. Only 30 cases have been reported in medical literature.
The Seckel syndrome or microcephalic primordial dwarfism (also known as bird-headed dwarfism, Harper's syndrome, Virchow-Seckel dwarfism, and Bird-headed dwarf of Seckel) is an extremely rare congenital nanosomic disorder.
Inheritance is autosomal recessive.
It is characterized by intrauterine growth retardation and postnatal dwarfism with a small head, narrow bird-like face with a beak-like nose, large eyes with down-slanting palpebral fissures , receding mandible and intellectual disability.
A mouse model has been developed. This mouse model is characterized by a severe deficiency of ATR protein. These mice suffer high levels of replicative stress and DNA damage. Adult Seckel mice display accelerated aging. These findings are consistent with the DNA damage theory of aging.
Gene based therapy is being studied. In June 2015, BioMarin announced positive results of their Phase 2 study, stating that 10 children experienced a mean increase of 50% in their annualized growth velocity.
CDPX1 activity may be inhibited by warfarin because it is believed that ARSE has enzymatic activity in a vitamin K producing biochemical pathway. Vitamin K is also needed for controlling binding of calcium to bone and other tissues within the body.
Achondroplasia is one of 19 congenital conditions with similar presentations, such as osteogenesis imperfecta, multiple epiphyseal dysplasia tarda, achondrogenesis, osteopetrosis, and thanatophoric dysplasia. This makes estimates of prevalence difficult, with changing and subjective diagnostic criteria over time. One detailed and long-running study in the Netherlands found that the prevalence determined at birth was only 1.3 per 100,000 live births. Another study at the same time found a rate of 1 per 10,000.