Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Kleefstra syndrome affects males and females equally and approximately, 75% of all documented cases are caused by Eu-HMTase1 disruptions while only 25% are caused by 9q34.3 deletions. There are no statistics on the effect the disease has on life expectancy due to the lack of information available.
Sandifer syndrome is not typically life-threatening and the prognosis is typically good.
Successful treatment of the associated underlying disorder, such as GORD or hiatus hernia, may provide relief.
Due to its recent discovery, there are currently no existing treatments for Kleefstra syndrome.
The recurrence of DOOR in siblings and the finding of DOOR syndrome in a few families with consanguinity suggest that the condition is an autosomal recessive genetic condition. Mutations in TBC1D24 have been identified in 9 families.
Recent findings in genetic research have suggested that a large number of genetic disorders, both genetic syndromes and genetic diseases, that were not previously identified in the medical literature as related, may be, in fact, highly related in the genetypical root cause of the widely varying, phenotypically-observed disorders. Thus, Alstrom syndrome is a ciliopathy. Other known ciliopathies include primary ciliary dyskinesia, Bardet-Biedl syndrome, polycystic kidney and liver disease, nephronophthisis, Meckel-Gruber syndrome and some forms of retinal degeneration.
The long-term prognosis of Costeff syndrome is unknown, though it appears to have no effect on life expectancy at least up to the fourth decade of life. However, as mentioned previously, movement problems can often be severe enough to confine individuals to a wheelchair at an early age, and both visual acuity and spasticity tend to worsen over time.
Ring chromosome 14 syndrome is extremely rare, the true rate of occurrence is unknown (as it is "less than" 1 per 1,000,000), but there are at least 50 documented cases in the literature.
A prognosis for Alström syndrome is complicated because it widely varies. Any person that has the syndrome have different set of disorders. Permanent blindness, deafness, and Type 2 diabetes may occur. Liver and kidney failure can progressively get worse. The life expectancy is usually reduced and the patients rarely live past 50 years old.
Sotos syndrome is not a life-threatening disorder and patients may have a normal life expectancy. Developmental delays may improve in the school-age years; however, coordination problems may persist into adulthood, along with any learning disabilities and/or other physical or mental issues.
First described in 1989, Costeff syndrome has been reported almost exclusively in individuals of Iraqi Jewish origin with only two exceptions, one of whom was a Turkish Kurdish, with the other being of Indian descent. Within the Iraqi Jewish population, the carrier frequency of the founder mutation is about 1/10, with the prevalence of Costeff syndrome itself estimated at anywhere between 1 in 400 and 1 in 10,000.
The National Institute of Health Office and Rare Disease Research characterizes PCDH19 gene-related epilepsy as a rare disorder. Rare diseases, by definition, are diseases that affect fewer than 200,000 people in the United States. Since the mutation associated with PCDH19 gene-related epilepsy was only recently identified in 2008, the true incidence of the disease is generally unknown.
Although formal epidemiologic data is not available, results from diagnostic screening indicates that approximately 1 out of 10 girls who have seizure onset before five years of age may have PCDH19 gene mutations. Additionally, PCDH19 screening of several large cohorts of females with early onset febrile-related epilepsy has resulted in a rate of approximately 10% of mutation-positive individuals.
Marinesco–Sjögren syndrome (MSS), sometimes spelled Marinescu–Sjögren syndrome, is a rare autosomal recessive disorder.
Treatment for MSS is symptomatic and supportive including physical and occupational therapy, speech therapy, and special education. Cataracts must be removed when vision is impaired, generally in the first decade of life. Hormone replacement therapy is needed if hypogonadism is present.
As with most genetic diseases there is no way to prevent the entire disease. With prompt recognition and treatment of infections in childhood, the complications of low white blood cell counts may be limited.
Mutations in the NSD1 gene cause Sotos syndrome. The NSD1 gene provides instructions for making a protein that is involved in normal growth and development. The function of this protein is unknown, however. In the Japanese population, the most common genetic change leading to Sotos syndrome deletes genetic material from the region of chromosome 5 containing the NSD1 gene. In other populations, small mutations within the NSD1 gene occur more frequently. Genetic changes involving the NSD1 gene prevent one copy of the gene from producing any functional protein. It is unclear how a reduced amount of this protein during development leads to learning disabilities, overgrowth, and the other features of Sotos syndrome.
About 95 percent of Sotos syndrome cases occur by spontaneous mutation. Most of these cases result from new mutations involving the NSD1 gene. A few families have been described with more than one affected family member. These inherited cases enabled researchers to determine that Sotos syndrome has an autosomal dominant pattern of inheritance.
The syndrome is caused by the loss of genetic material near the end of the long arm (q) of chromosome 14 . The break that causes the telomere(s) to be lost occurs near the end of the chromosome, and is called a "constitutional ring". These rings arise spontaneously ( it is rarely inherited).Ring chromosome 14 syndrome finds itself at 14:0-107,043,718 which are the genomic coordinates.
The genetic abnormality occurs randomly in sperm or egg cells or it may occur in early embryonic growth, if it occurs during embryonic growth the ring chromosome may be present in only some of a person's cells.
Langer–Giedion syndrome (LGS) is a very uncommon autosomal dominant genetic disorder caused by a deletion of chromosomal material. It is named after the two doctors who undertook the main research into the condition in the 1960s. Diagnosis is usually made at birth or in early childhood.
DOOR (deafness, onychdystrophy, osteodystrophy, and mental retardation) syndrome is a genetic disease which is inherited in an autosomal recessive fashion. DOOR syndrome is characterized by mental retardation, sensorineural deafness, abnormal nails and phalanges of the hands and feet, and variable seizures. A similar deafness-onychodystrophy syndrome is transmitted as an autosomal dominant trait and has no mental retardation. Some authors have proposed that it may be the same as Eronen Syndrome, but since both disorders are extremely rare it is hard to make a determination.
While no genetic syndrome is capable of being cured, treatments are available for some symptoms. External fixators have been used for limbic and facial reconstructions.
Frequent blood transfusions are given in the first year of life to treat anemia. Prednisone may be given, although this should be avoided in infancy because of side effects on growth and brain development. A bone marrow transplant may be necessary if other treatment fails.
Melkersson–Rosenthal syndrome may recur intermittently after its first appearance. It can become a chronic disorder. Follow-up care should exclude the development of Crohn's disease or sarcoidosis.
A 2008 study, found a relationship between the PCDH19 gene and early onset female seizures, with subsequent studies confirming the relationship.
PCDH19 gene-related epilepsy can arise as a single case in a family, due to a de novo error in cell replication, or it can be inherited. In a large series of cases in which inheritance was determined, half of the PCDH19 mutations occurred de novo, and half were inherited from fathers in good health, and who had no evidence of seizures or cognitive disorders.
Men and women can transmit the PCDH19 mutation, although females, but not males, usually, but not always, exhibit symptoms, which can be very mild. Females with a mutation have a 50% chance of having children who are carriers. Men have a 100% chance of transmitting the mutation to a daughter and 0% chance to a son.
Although males do not generally exhibit PCDH19 gene-related history such as cluster seizures, in a study involving four families with PCDH19 gene mutations, 5 of the fathers had obsessive and controlling tendencies. The linkage of chromosome Xq22.1 to PCDH19 gene-related epilepsy in females was confirmed in all of the families.
The inheritance pattern is very unusual, in that men that carry the PCDH19 gene mutation on their only X-chromosome are typically unaffected, except in rare instances of somatic mosaicism. Alternatively, approximately 90% of women, who have the mutation on one of their two X-chromosomes, exhibit symptoms. It has been suggested that the greater occurrence of PCDH19-epilepsy in females may relate to X-chromosome inactivation, through a hypothesized mechanism termed ‘‘cellular interference’’.
A 2011 study found instances where patients had PCDH19 mutation, but their parents did not. They found that "gonadal mosaicism” of a PCDH19 mutation in a parent is an important molecular mechanism associated with the inheritance of a mutated PCDH19 gene.
The Roussy–Lévy syndrome is not a fatal disease and life expectancy is normal. However, due to progressive muscle wasting patients may need supportive orthopaedic equipment or wheelchair assistance.
Currently, purine replacement via S-adenosylmethionine (SAM) supplementation in people with Arts syndrome appears to improve their condition. This suggests that SAM supplementation can alleviate symptoms of PRPS1 deficient patients by replacing purine nucleotides and open new avenues of therapeutic intervention. Other non-clinical treatment options include educational programs tailored to their individual needs. Sensorineural hearing loss has been treated with cochlear implantation with good results. Ataxia and visual impairment from optic atrophy are treated in a routine manner. Routine immunizations against common childhood infections and annual influenza immunization can also help prevent any secondary infections from occurring.
Regular neuropsychological, audiologic, and ophthalmologic examinations are also recommended.
Carrier testing for at-risk relatives and prenatal testing for pregnancies at increased risk are possible if the disease-causing mutation in the family is known.