Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In the United States, sarcoidosis has a prevalence of approximately 10 cases per 100,000 whites and 36 cases per 100,000 blacks. Heerfordt syndrome is present in 4.1–5.6% of those with sarcoidosis.
Harlequin syndrome is not debilitating so treatment is not normally necessary. In cases where the individual may feel socially embarrassed, contralateral sympathectomy may be considered, although compensatory flushing and sweating of other parts of the body may occur. In contralateral sympathectomy, the nerve bundles that cause the flushing in the face are interrupted. This procedure causes both sides of the face to no longer flush or sweat. Since symptoms of Harlequin syndrome do not typically impair a person’s daily life, this treatment is only recommended if a person is very uncomfortable with the flushing and sweating associated with the syndrome.
The exact cause of Heerfordt syndrome has not yet been definitively determined. Of those patients who have been diagnosed with Heerfordt syndrome, 15% have a close relative who also has the syndrome. One possible explanation is that the syndrome results from a combination of an environmental agent and a hereditary predisposition. "Mycobacterium" and "Propionibacteria" species have both been suggested as the environmental agent, though the evidence for this is inconclusive.
One possible cause of Harlequin syndrome is a lesion to the preganglionic or postganglionic cervical sympathetic fibers and parasympathetic neurons of the ciliary ganglion. It is also believed that torsion (twisting) of the thoracic spine can cause blockage of the anterior radicular artery leading to Harlequin syndrome. The sympathetic deficit on the denervated side causes the flushing of the opposite side to appear more pronounced. It is unclear whether or not the response of the undamaged side was normal or excessive, but it is believed that it could be a result of the body attempting to compensate for the damaged side and maintain homeostasis.
Since the cause and mechanism of Harlequin syndrome is still unknown, there is no way to prevent this syndrome.
After the first discovery and description of Marshall–Smith syndrome in 1971, research to this rare syndrome has been carried out.
- Adam, M., Hennekam, R.C.M., Butler, M.G., Raf, M., Keppen, L., Bull, M., Clericuzio, C., Burke, L., Guttacher, A., Ormond, K., & Hoyme, H.E. (2002). Marshall–Smith syndrome: An osteochondrodysplasia with connective tissue abnormalities. 23rd Annual David W. Smith Workshop on Malformations and Morphogenesis, August 7, Clemson, SC.
- Adam MP, Hennekam RC, Keppen LD, Bull MJ, Clericuzio CL, Burke LW, Guttmacher AE, Ormond KE and Hoyme HE: Marshall-Smith Syndrome: Natural history and evidence of an osteochondrodysplasia with connective tissue abnormalities. American Journal of Medical Genetics 137A:117–124, 2005.
- Baldellou Vazquez A, Ruiz-Echarri Zelaya MP, Loris Pablo C, Ferr#{225}ndez Longas A, Tamparillas Salvador M. El sIndrome de Marshall-Smith: a prop#{243}sito de una observad#{243}n personal. An Esp Pediatr 1983; 18:45-50.
- Butler, M.G. (2003). Marshall–Smith syndrome. In: The NORD Guide to Rare Disorders. (pp219–220) Lippincott, Williams & Wilkins, Philadelphia, PA.
- Charon A, Gillerot T, Van Maldergem L, Van Schaftingen MH, de Bont B, Koulischer L. The Marshall–Smith syndrome. Eur J Pediatr 1990; 150: 54-5.
- Dernedde, G., Pendeville, P., Veyckemans, F., Verellen, G. & Gillerot, Y. (1998). Anaesthetic management of a child with Marshall–Smith syndrome. Canadian Journal of Anesthesia. 45 (7): 660. Anaesthetic management of a child with Marshall-Smith syndrome
- Diab, M., Raff, M., Gunther, D.F. (2002). Osseous fragility in Marshall–Smith syndrome. Clinical Report: Osseous fragility in Marshall-Smith syndrome
- Ehresmann, T., Gillessen-Kaesbach G., Koenig R. (2005). Late diagnosis of Marshall Smith Syndrome (MSS). In: Medgen 17.
- Hassan M, Sutton T, Mage K, LimalJM, Rappaport R. The syndrome of accelerated bone maturation in the newborn infant with dysmorphism and congenital malformations: (the so-called Marshall–Smith syndrome). Pediatr Radiol 1976; 5:53-57.
- Hoyme HE and Bull MJ: The Marshall-Smith Syndrome: Natural history beyond infancy. Western Society for Pediatric Research, Carmel, California, February, 1987. Clin Res 35:68A, 1987.
- Hoyme HE and Bull MJ: The Marshall-Smith Syndrome: Natural history beyond infancy. David W. Smith Morphogenesis and Malformations Workshop. Greenville, SC, August, 1987. Proceedings of the Greenwood Genetics Center 7:152, 1988.
- Hoyme HE, Byers PH, Guttmacher AE: Marshall–Smith syndrome: Further evidence of an osteochondrodysplasia in long-term survivors. David W. Smith Morphogenesis and Malformations Workshop, Winston-Salem, NC, August, 1992. Proceedings of the Greenwood Genetic Center 12:70, 1993.
- .
- Tzu-Jou Wang (2002). Marshall–Smith syndrome in a Taiwanese patient with T-cell immunodeficiency. Am J Med Genet Part A;112 (1):107-108.
Respiratory complications are often cause of death in early infancy.
A syndrome is a set of medical signs and symptoms occurring together, constitutes a particular disease or disorder. The word derives from the Greek σύνδρομον, meaning "concurrence". In some instances, a syndrome is so closely linked with a pathogenesis or cause that the words "syndrome", "disease", and "disorder" end up being used interchangeably for them. This is especially true of inherited syndromes. For example, Down syndrome, Wolf–Hirschhorn syndrome, and Andersen syndrome are disorders with known pathogeneses, so each is more than just a set of signs and symptoms, despite the "syndrome" nomenclature. In other instances, a syndrome is not specific to only one disease. For example, toxic shock syndrome can be caused by various toxins; premotor syndrome can be caused by various brain lesions; and premenstrual syndrome is not a disease but simply a set of symptoms.
If an underlying genetic cause is suspected but not known, a condition may be referred to as a genetic association (often just "association" in context). By definition, an association indicates that the collection of signs and symptoms occurs in combination more frequently than would be likely by chance alone.
Syndromes are often named after the physician or group of physicians that discovered them or initially described the full clinical picture. Such eponymous syndrome names are examples of medical eponyms. Recently, there has been a shift towards naming conditions descriptively (by symptoms or underlying cause) rather than eponymously, but the eponymous syndrome names often persist in common usage.
It is not possible to make a generalised prognosis for development due to the variability of causes, as mentioned above, the differing types of symptoms and cause. Each case must be considered individually.
The prognosis for children with idiopathic West syndrome are mostly more positive than for those with the cryptogenic or symptomatic forms. Idiopathic cases are less likely to show signs of developmental problems before the attacks begin, the attacks can often be treated more easily and effectively and there is a lower relapse rate. Children with this form of the syndrome are less likely to go on to develop other forms of epilepsy; around two in every five children develop at the same rate as healthy children.
In other cases, however, treatment of West syndrome is relatively difficult and the results of therapy often dissatisfying; for children with symptomatic and cryptogenic West syndrome, the prognosis is generally not positive, especially when they prove resistant to therapy.
Statistically, 5 out of every 100 children with West syndrome do not survive beyond five years of age, in some cases due to the cause of the syndrome, in others for reasons related to their medication. Only less than half of all children can become entirely free from attacks with the help of medication. Statistics show that treatment produces a satisfactory result in around three out of ten cases, with only one in every 25 children's cognitive and motoric development developing more or less normally.
A large proportion (up to 90%) of children suffer severe physical and cognitive impairments, even when treatment for the attacks is successful. This is not usually because of the epileptic fits, but rather because of the causes behind them (cerebral anomalies or their location or degree of severity). Severe, frequent attacks can (further) damage the brain.
Permanent damage often associated with West syndrome in the literature include cognitive disabilities, learning difficulties and behavioural problems, cerebral palsy (up to 5 out of 10 children), psychological disorders and often autism (in around 3 out of 10 children). Once more, the cause of each individual case of West syndrome must be considered when debating cause and effect.
As many as 6 out of 10 children with West syndrome suffer from epilepsy later in life. Sometimes West syndrome turns into a focal or other generalised epilepsy. Around half of all children develop Lennox-Gastaut syndrome.
Incidence is around 1:3200 to 1:3500 of live births. Statistically, boys are more likely to be affected than girls at a ratio of around 1.3:1. In 9 out of every 10 children affected, the spasms appear for the first time between the third and the twelfth month of age. In rarer cases, spasms may occur in the first two months or during the second to fourth year of age.
In medicine a broad definition of syndrome is used, which describes a collection of symptoms and findings without necessarily tying them to a single identifiable pathogenesis. The more specific definition employed in medical genetics describes a subset of all medical syndromes.
Autoimmune polyendocrine syndrome type 1 (APS-1), also known as autoimmune polyendocrinopathy-candidiasis–ectodermal dystrophy/dysplasia (APECED), autoimmune polyglandular syndrome type 1, Whitaker syndrome, or candidiasis-hypoparathyroidism–Addison's disease syndrome, is a subtype of autoimmune polyendocrine syndrome (autoimmune polyglandular syndrome) in which multiple endocrine glands dysfunction as a result of autoimmunity. It is a genetic disorder inherited in autosomal recessive fashion due to a defect in the "AIRE" gene (autoimmune regulator), which is located on chromosome 21 and normally confers immune tolerance.
Roberts syndrome is an extremely rare condition that only affects about 150 reported individuals. Although there have been only about 150 reported cases, the affected group is quite diverse and spread worldwide. Parental consanguinity (parents are closely related) is common with this genetic disorder. The frequency of Roberts syndrome carriers is unknown.
Pashayan syndrome also known as Pashayan–Prozansky Syndrome, and blepharo-naso-facial syndrome is a rare syndrome. Facial abnormalities characterise this syndrome as well as malformation of extremities. Specific characteristics would be a bulky, flattened nose, where the face has a mask like appearance and the ears are also malformed.
A subset of Pashayan syndrome has also been described, known as "cerebrofacioarticular syndrome", "Van Maldergem syndrome'" or "Van Maldergem–Wetzburger–Verloes syndrome". Similar symptoms are noted in these cases as in Pashayan syndrome.
The Kocher–Debré–Semelaigne syndrome is hypothyroidism in infancy or childhood characterised by lower extremity or generalized muscular hypertrophy, myxoedema, short stature and cretinism. The absence of painful spasms and pseudomyotonia differentiates this syndrome from its adult form, which is Hoffmann syndrome.
The syndrome is named after Emil Theodor Kocher, Robert Debré and Georges Semelaigne.
Also known as Debre–Semelaigne syndrome or cretinism-muscular hypertrophy, hypothyroid myopathy, hypothyroidism-large muscle syndrome, hypothyreotic muscular hypertrophy in children, infantile myxoedema-muscular hypertrophy, myopathy-myxoedema syndrome, myxoedema-muscular hypertrophy syndrome, myxoedema-myotonic dystrophy syndrome.
Kocher-Debre-Semelaigne syndrome gives infant a Hercules appearance.
Nevo Syndrome is considered to be a rare disorder. Since its first appearance in 1974, only a handful of cases have been reported. Studies have shown showing similarities between Nevo Syndrome with Ehlers-Danlos syndrome as well as Sotos syndrome. There is an astounding overlap of phenotypic manifestations between Nevo Syndrome and the more frequent Sotos syndrome, which are both caused by the NSD1 deletion. Sotos syndrome is an autosomal dominant condition associated with learning disabilities, a distinctive facial appearance, and overgrowth. Studies have shown an overwhelming occurrence (half of those involved in the study) of Nevo syndrome in those individuals of Middle-Eastern descent.
Documented cases of Reye syndrome in adults are rare. The recovery of adults with the syndrome is generally complete, with liver and brain function returning to normal within two weeks of onset. In children, however, mild to severe permanent brain damage is possible, especially in infants. Over thirty percent of the cases reported in the United States from 1981 through 1997 resulted in fatality.
There is no specific treatment or cure for individuals affected with this type of syndrome, though some of the abnormal physical features may be surgically correctable.
There is an association between taking aspirin for viral illnesses and the development of Reye syndrome, but no animal model of Reye syndrome has been developed in which aspirin causes the condition.
The serious symptoms of Reye syndrome appear to result from damage to cellular mitochondria, at least in the liver, and there are a number of ways that aspirin could cause or exacerbate mitochondrial damage. A potential increased risk of developing Reye syndrome is one of the main reasons that aspirin has not been recommended for use in children and teenagers, the age group for which the risk of lasting serious effects is highest.
No research has found a definitive cause of Reye syndrome, and association with aspirin has been shown through epidemiological studies. The diagnosis of "Reye Syndrome" greatly decreased in the 1980s, when genetic testing for inborn errors of metabolism was becoming available in developed countries. A retrospective study of 49 survivors of cases diagnosed as "Reye's Syndrome" showed that the majority of the surviving patients had various metabolic disorders, particularly a fatty-acid oxidation disorder medium-chain acyl-CoA dehydrogenase deficiency.
In some countries, oral mouthcare product Bonjela (not the form specifically designed for teething) has labeling cautioning against its use in children, given its salicylate content. There have been no cases of Reye syndrome following its use, and the measure is a precaution. Other medications containing salicylates are often similarly labeled as a precaution.
The Centers for Disease Control and Prevention (CDC), the U.S. Surgeon General, the American Academy of Pediatrics (AAP) and the Food and Drug Administration (FDA) recommend that aspirin and combination products containing aspirin not be given to children under 19 years of age during episodes of fever-causing illnesses. Hence, in the United States, it is advised that the opinion of a doctor or pharmacist should be obtained before anyone under 19 years of age is given any medication containing aspirin (also known on some medicine labels as acetylsalicylate, salicylate, acetylsalicylic acid, ASA, or salicylic acid).
Current advice in the United Kingdom by the Committee on Safety of Medicines is that aspirin should not be given to those under the age of 16 years, unless specifically indicated in Kawasaki disease or in the prevention of blood clot formation.
Autoimmune polyendocrine syndrome type 1 is a condition caused in an autosomal recessive manner. Furthermore, it is due to a defect in AIRE gene (which helps to make a protein that is called the autoimmune regulator) mapped to 21q22.3 chromosome location, hence chromosome 21.
Males are twice as likely as females to have this characteristic, and it tends to run in families. In its non-symptomatic form, it is more common among Asians and Native Americans than among other populations, and in some families there is a tendency to inherit the condition unilaterally, that is, on one hand only.
The presence of a single transverse palmar crease can be, but is not always, a symptom associated with abnormal medical conditions, such as fetal alcohol syndrome, or with genetic chromosomal abnormalities, including Down Syndrome (chromosome 21), cri du chat syndrome (chromosome 5), Klinefelter syndrome, Wolf-Hirschhorn Syndrome, Noonan syndrome (chromosome 12), Patau syndrome (chromosome 13), IDIC 15/Dup15q (chromosome 15), Edward's syndrome (chromosome 18), and Aarskog-Scott syndrome (X-linked recessive), or autosomal recessive disorder, such as Leaukocyte adhesion deficiency-2 (LAD2). A unilateral single palmar crease was also reported in a case of chromosome 9 mutation causing Nevoid basal cell carcinoma syndrome and Robinow syndrome. It is also sometimes found on the hand of the affected side of patients with Poland Syndrome, and craniosynostosis.
As the syndrome is due to a chromosomal non-disjunction event, the recurrence risk is not high compared to the general population. There has been no evidence found that indicates non-disjunction occurs more often in a particular family.
Rosselli–Gulienetti syndrome, also known as Zlotogora–Ogur syndrome and Bowen–Armstrong syndrome, is a type of congenital ectodermal dysplasia syndrome. The syndrome is relatively rare and has only been described in a few cases.
It is likely that this syndrome is inherited in an autosomal dominant fashion, however there may be a recessive form with hypotonia and developmental delay.
Overall, the estimated prevalence of Stickler syndrome is about 1 in 10,000 people. Stickler syndrome affects 1 in 7,500 to 9,000 newborns.
The RASopathies are developmental syndromes caused by germline mutations (or in rare cases by somatic mosaicism) in genes that alter the Ras subfamily and mitogen-activated protein kinases that control signal transduction, including:
- Capillary malformation-AV malformation syndrome
- Autoimmune lymphoproliferative syndrome
- Cardiofaciocutaneous syndrome
- Hereditary gingival fibromatosis type 1
- Neurofibromatosis type 1
- Noonan syndrome
- Costello syndrome, Noonan-like
- Legius syndrome, Noonan-like
- Noonan syndrome with multiple lentigines, formerly called LEOPARD syndrome, Noonan-like