Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The most common cause of is overly rapid correction of low blood sodium levels (hyponatremia). Apart from rapid correction of hyponatraemia, there are case reports of central pontine myelinolysis in association with hypokalaemia, anorexia nervosa when feeding is started, patients undergoing dialysis and burns victims. There is a case report of central pontine myelinolysis occurring in the context of re-feeding syndrome, in the absence of hyponatremia.
It has also been known to occur in patients suffering withdrawal symptoms of chronic alcoholism. In these instances, occurrence may be entirely unrelated to hyponatremia or rapid correction of hyponatremia. It could affect patients who take some prescription medicines that are able to cross the blood-brain barrier and cause abnormal thirst reception - in this scenario the CPM is caused by polydipsia leading to low blood sodium levels (hyponatremia).
In schizophrenic patients with psychogenic polydipsia, inadequate thirst reception leads to excessive water intake, severely diluting serum sodium. With this excessive thirst combined with psychotic symptoms, brain damage such as CPM may result from hyperosmolarity caused by excess intake of fluids, (primary polydipsia) although this is difficult to determine because such patients are often institutionalised and have a long history of mental health conditions.
It has been observed following hematopoietic stem cell transplantation.
CPM may also occur in patients prone to hyponatraemia affected by
- severe liver disease
- liver transplant
- alcoholism
- severe burns
- malnutrition
- anorexia
- severe electrolyte disorders
- AIDS
- hyperemesis gravidarum
- hyponatremia due to Peritoneal Dialysis
- Wernicke encephalopathy
Though traditionally, the prognosis is considered poor, a good functional recovery is possible. All patients at risk of developing refeeding syndrome should have their electrolytes closely monitored, including sodium, potassium, magnesium, glucose and phosphate.
Recent data indicate that the prognosis of critically ill patients may even be better than what is generally considered, despite severe initial clinical manifestations and a tendency by the intensivists to underestimate a possible favorable evolution.
While some patients die, most survive and of the survivors, approximately one-third recover; one-third are disabled but are able to live independently; one-third are severely disabled. Permanent disabilities range from minor tremors and ataxia to signs of severe brain damage, such as spastic quadriparesis and locked-in syndrome. Some improvements may be seen over the course of the first several months after the condition stabilizes.
The degree of recovery depends on the extent of the original axonal damage.
Psychogenic polydipsia is found in patients with mental illnesses, most commonly schizophrenia, but also anxiety disorders and rarely affective disorders, anorexia nervosa and personality disorders. PPD occurs in between 6% and 20% of psychiatric inpatients. It may also be found in people with developmental disorders, such as those with autism. While psychogenic polydipsia is usually not seen outside the population of those with serious mental disorders, it may occasionally be found among others in the absence of psychosis, although there is no existent research to document this other than anecdotal observations. Such persons typically prefer to possess bottled water that is ice-cold, consume water and other fluids at excessive levels. However, a preference for ice-cold water is also seen in diabetes insipidus.
As a diagnosis of exclusion, a diagnosis of primary polydipsia may be the result of elimination of the possibility of diseases causing similar signs and symptoms, such as diabetes insipidus. Diagnosis may be complicated by the fact that chronic and extreme compulsive drinking may impair the response of the kidneys to vasopressin, thus reducing the kidney's ability to concentrate the urine. This means that psychogenic polydipsia may lead to test results (e.g. in a water restriction test) consistent with diabetes insipidus or SIADH, leading to misdiagnosis.
Dry mouth is often a side effect of medications used in the treatment of some mental disorders, rather than being caused by the underlying condition. Such medications include antipsychotics, antidepressants, anticonvulsants, alpha agonists and anticholinergics. It should also be ensured that the thirst isn't caused by diuretic use (particularly thiazide diuretics), MDMA use, excessive solute intake or chronic alcoholism. Alcoholism may cause physiological thirst since ethanol inhibits vasopressin, the hormone primarily responsible for water retention in osmoregulation. The following conditions should also be excluded: DI, cerebral salt wasting, pseudohyponatraemia caused by hyperlipidemia or hyperparaproteinemia, SIADH, mineralcorticoid deficiency, salt-wasting nephropathy, nephrotic syndrome, chronic heart failure and cirrhosis.
Tobacco smoking is an often overlooked factor linked to hypnoatremia, due to the ADH-releasing effect of nicotine, although this is usually limited to heavy smokers. One study suggested that around 70% of patients with self-induced polydipsia were tobacco smokers. Diagnostic tests for primary polydipsia usually involves the fluid deprivation test to exclude ADH problems. The desmopressin test is also used, in which the synthetic hormone is used as a diagnostic workup to test for inappropriate secretion of vasopressin, as seen in DI and SIADH.
The hypovolemia (extracellular volume loss) is due to total body sodium loss. The hyponatremia is caused by a relatively smaller loss in total body water.
- any cause of hypovolemia such as prolonged vomiting, decreased oral intake, severe diarrhea
- diuretic use (due to the diuretic causing a volume depleted state and thence ADH release, and not a direct result of diuretic-induced urine sodium loss)
- Addison's disease and congenital adrenal hyperplasia in which the adrenal glands do not produce enough steroid hormones (combined glucocorticoid and mineralocorticoid deficiency)
- pancreatitis
Prolonged periods of exercise may be a cause, known as exercise-associated hyponatremia (EAH). It is common in marathon runners and participants of other endurance events. The use of MDMA can result in hyponatremia. This likely occurs as a result of fluid loss via sweating and replacement with water without electrolytes.
There is volume expansion in the body, no edema, but hyponatremia occurs
- SIADH (and its many causes)
- Hypothyroidism
- Not enough ACTH
The normal human kidney, through suppression of anti-diuretic hormone, is normally able to excrete vast amounts of dilute urine. Thus a normal adult can drink up to 20 liters per day of water without becoming hyponatremic. However, the intake of solutes is also necessary to excrete free water. Under normal circumstances, this is clinically irrelevant. In the lack of proper solute intake, the amount of free water excretion can be severely limited. Without adequate solute intake, the normal functioning electrolyte gradient that pulls water into urine will be effectively destroyed.
Briefly, to excrete free water from urine, the urine flow (which is solute clearance + free water clearance) will equal the rate of solute excretion divided by the urine osmolality. With a diet of only solute poor beer, only about 200-300 mOSM (normal 750 mOSM to greater than 900 mOSM) of solute will be excreted per day, capping the amount of free water excretion at four liters. Any intake above 4 liters would lead to a dilution of the serum sodium concentration and thus hyponatremia.
Any vomiting or GI absorptive problems due to alcohol intoxication can also compound the effect of potomania due to additional electrolyte and acid-base disturbances.
Unlike persistent vegetative state, in which the upper portions of the brain are damaged and the lower portions are spared, locked-in syndrome is caused by damage to specific portions of the lower brain and brainstem, with no damage to the upper brain.
Possible causes of locked-in syndrome include:
- Poisoning cases – More frequently from a krait bite and other neurotoxic venoms, as they cannot, usually, cross the blood–brain barrier
- Brainstem stroke
- Diseases of the circulatory system
- Medication overdose .
- Damage to nerve cells, particularly destruction of the myelin sheath, caused by disease or "osmotic demyelination syndrome" (formerly designated central pontine myelinolysis) secondary to excessively rapid correction of hyponatremia [>1 mEq/L/h])
- A stroke or brain hemorrhage, usually of the basilar artery
- Traumatic brain injury
- Result from lesion of the brain-stem
Curare poisoning mimics a total locked-in syndrome by causing paralysis of all voluntarily controlled skeletal muscles. The respiratory muscles are also paralyzed, but the victim can be kept alive by artificial respiration, such as mouth-to-mouth resuscitation. In a study of 29 army volunteers who were paralyzed with curare, artificial respiration managed to keep an oxygen saturation of always above 85%, a level at which there is no evidence of altered state of consciousness. Spontaneous breathing is resumed after the end of the duration of action of curare, which is generally between 30 minutes and eight hours, depending on the variant of the toxin and dosage.
As with all cases of hyponatremia, extreme caution must be taken to avoid the fatal consequences of rapidly correcting electrolytes (e.g. Central pontine myelinolysis, edema). Special considerations with the treatment of potomania are needed. Because this could be a chronic condition, low sodium may be normal for the patient, so an especially careful correction is warranted. It is also very important to note that due to the normal kidney function, and lack of other intrinsic or toxic cause of the electrolyte disturbance, restoration of dietary solutes will correct the electrolytes to normal serum levels. This again must be done with caution.
It is extremely rare for any significant motor function to return. The majority of locked-in syndrome patients do not regain motor control, but devices are available to help patients communicate. However, some people with the condition continue to live much longer, while in exceptional cases, like that of Kerry Pink and Kate Allatt, a full spontaneous recovery may be achieved.
Posterior cerebral artery syndrome is a condition whereby the blood supply from the posterior cerebral artery (PCA) is restricted, leading to a reduction of the function of the portions of the brain supplied by that vessel: the occipital lobe, the inferomedial temporal lobe, a large portion of the thalamus, and the upper brainstem and midbrain.
This event restricts the flow of blood to the brain in a near-immediate fashion. The blood hammer is analogous to the water hammer in hydrology and it consists of a sudden increase of the upstream blood pressure in a blood vessel when the bloodstream is abruptly blocked by vessel obstruction. Complete understanding of the relationship between mechanical parameters in vascular occlusions is a critical issue, which can play an important role in the future diagnosis, understanding and treatment of vascular diseases.
Depending upon the location and severity of the occlusion, signs and symptoms may vary within the population affected with PCA syndrome. Blockages of the proximal portion of the vessel produce only minor deficits due to the collateral blood flow from the opposite hemisphere via the posterior communicating artery. In contrast, distal occlusions result in more serious complications. Visual deficits, such as agnosia, prosopagnosia or cortical blindness (with bilateral infarcts) may be a product of ischemic damage to occipital lobe. Occlusions of the branches of the PCA that supply the thalamus can result in central post-stroke pain and lesions to the subthalamic branches can produce “a wide variety of deficits”.
Left posterior cerebral artery syndrome presents alexia without agraphia; the lesion is in the splenium of the corpus callosum.
The incidence of SIADH rises with increasing age. Residents of nursing homes are at highest risk.
Treatment of any kind of complex visual hallucination requires an understanding of the different pathologies in order to correctly diagnose and treat. If a person is taking a pro-hallucinogenic medication, the first step is to stop taking it. Sometimes improvement will occur spontaneously and pharmacotherapy is not necessary. While there is not a lot of evidence of effective pharmacological treatment, antipsychotics and anticonvulsants have been used in some cases to control hallucinations. Since peduncular hallucinosis occurs due to an excess of serotonin, modern antipsychotics are used to block both dopamine and serotonin receptors, preventing the overstimulation of the lateral geniculate nucleus. The drug generically called carbamazepine increases GABA, which prevents the LGN from firing, thereby increasing the inhibition of the LGN. Regular antipsychotics as well as antidepressants can also be helpful in reducing or eliminating peduncular hallucinosis.
More invasive treatments include corrective surgery such as cataract surgery, laser photocoagulation of the retina, and use of optical correcting devices. Tumor removal can also help to relieve compression in the brain, which can decrease or eliminate peduncular hallucinosis. Some hallucinations may be due to underlying cardiovascular disease, so in these cases the appropriate treatment includes control of hypertension and diabetes. As described, the type of treatment varies widely depending on the causation behind the complex visual hallucinations.
It can be caused by an interruption to the blood supply of the anterior inferior cerebellar artery or circumferential arteries.
A lateral pontine syndrome is a lesion which is similar to the lateral medullary syndrome, but because it occurs in the pons, it also involves the cranial nerve nuclei of the pons.
People diagnosed with Parkinson's disease, narcolepsy-cataplexy syndrome, delirium tremens, Lewy Body Dementia, and temporal lobe epilepsy are more prone to complex visual hallucinations such as peduncular hallucinosis. Peduncular hallucinosis is more common in patients with a long duration of Parkinson's disease and also with a long treatment history, depression, and cognitive impairment. Paranoid delusions are common in these patients even though the hallucinations can occur during clear sensorium.
PBA is one of the most frequently reported post-stroke behavioral syndromes, with a range of reported prevalence rates from 28% to 52%. The higher prevalence rates tend to be reported in stroke patients who are older and/or who have a history of prior stroke. The relationship between post-stroke depression and PBA is complicated, because the depressive syndrome also occurs with high frequency in stroke survivors. Post-stroke patients with PBA are more depressed than poststroke patients without PBA, and the presence of a depressive syndrome may exacerbate the weeping side of PBA symptoms.
Incidence of demyelinating diseases vary from disorder to disorder. Some conditions, such as Tabes dorsalis appear predominantly in males and begins in mid-life. Optic neuritis on the other hand, occurs preferentially in females typically between the ages of 30 and 35. Other conditions such as multiple sclerosis vary in prevalence depending on the country and population. This condition can appear in children as well as adults.
Central nervous system fatigue, or central fatigue, is a form of fatigue that is associated with changes in the synaptic concentration of neurotransmitters within the central nervous system (CNS; including the brain and spinal cord) which affects exercise performance and muscle function and cannot be explained by peripheral factors that affect muscle function. In healthy individuals, central fatigue can occur from prolonged exercise and is associated with neurochemical changes in the brain, primarily involving serotonin (5-HT), noradrenaline, and dopamine. Central fatigue plays an important role in endurance sports and also highlights the importance of proper nutrition in endurance athletes.
A study designed specifically to survey for prevalence found that 49% of patients with amyotrophic lateral sclerosis (ALS) also had PBA. PBA does not appear to be associated with duration of ALS. It is a symptom of ALS that many patients are unaware of and do not receive information about from their physician.
The role of prolonged cortical myelination in human evolution has been implicated as a contributing factor in some cases of demyelinating disease. Unlike other primates, humans exhibit a unique pattern of postpubertal myelination, which may contribute to the development of psychiatric disorders and neurodegenerative diseases that present in early adulthood and beyond. The extended period of cortical myelination in humans may allow greater opportunity for disruption in myelination, resulting in the onset of demyelinating disease. Furthermore, it has been noted that humans have significantly greater prefrontal white matter volume than other primate species, which implies greater myelin density. Increased myelin density in humans as a result of a prolonged myelination may therefore structure risk for myelin degeneration and dysfunction. Evolutionary considerations for the role of prolonged cortical myelination as a risk factor for demyelinating disease are particularly pertinent given that genetics and autoimmune deficiency hypotheses fail to explain many cases of demyelinating disease. As has been argued, diseases such as multiple sclerosis cannot be accounted for by autoimmune deficiency alone, but strongly imply the influence of flawed developmental processes in disease pathogenesis. Therefore, the role of the human-specific prolonged period of cortical myelination is an important evolutionary consideration in the pathogenesis of demyelinating disease.
Currently there are no official tests or treatments for ROHHAD. Each child has the symptoms above at different ages, yet most symptoms are eventually present. Many children are misdiagnosed or are never diagnosed until alveolar hypoventilation occurs.
Central nervous system depression or CNS depression refers to physiological depression of the central nervous system that can result in decreased rate of breathing, decreased heart rate, and loss of consciousness possibly leading to coma or death. CNS depression is specifically the result of inhibited brain activity.
CNS depression is generally caused by the use of depressant drugs such as ethanol, opioids, barbiturates, benzodiazepines, general anesthetics, and anticonvulsants such as pregabalin used to treat epilepsy.
Drug overdose is often caused by combining two or more depressant drugs, although overdose is certainly possible by consuming a large dose of one depressant drug. CNS depression can also be caused by the accidental or intentional inhalation or ingestion of certain volatile chemicals such as Butanone (contained in Plastic Cement) or Isopropyl Alcohol. Other causes of CNS depression are metabolic disturbances such as hypoglycaemia.
Existing experimental methods have provided enough evidence to suggest that variations in synaptic serotonin, noradrenaline, and dopamine are significant drivers of central nervous system fatigue. An increased synaptic dopamine concentration in the CNS is strongly ergogenic (promotes exercise performance). An increased synaptic serotonin or noradrenaline concentration in the CNS impairs exercise performance.