Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The reported incidence of constriction ring syndrome varies from 1/1200 and 1/15000 live births. The prevalence is equally in male and female.
Fetomaternal factors like prematurity, maternal illnes, low birth weight and maternal drug exposure are predisposing factors for the constriction ring syndrome.
No positive relationship between CRS and genetic inheritance has been reported.
There is still some discussion on whether FND is sporadic or genetic. The majority of FND cases are sporadic. Yet, some studies describe families with multiple members with FND. Gene mutations are likely to play an important role in the cause. Unfortunately, the genetic cause for most types of FND remains undetermined.
Type VII of radial polydactyly is associated with several syndromes:
Holt–Oram syndrome, Fanconi anemia (aplastic anemia by the age of 6), Townes–Brocks syndrome, and Greig cephalopolysyndactyly (also known to occur with ulnar polydactyly).
There are approximately three hundred known cases of Carpenter Syndrome in the United States. Only 1 in 1 million live births will result in an infant affected by Carpenter Syndrome (RN, 2007).
Carpenter Syndrome is an autosomal recessive disease which means both parents must have the faulty genes in order to pass the disease onto their children. Even if both parents possess the faulty gene there is still only a twenty five percent chance that they will produce a child affected by the syndrome. Their children who do not have the disease will still be carriers and possess the ability to pass the disease onto their offspring if their spouse is also a carrier of the particular gene.
The syndromes associated with central polydactyly are:
Bardet–Biedl syndrome,
Meckel syndrome,
Pallister–Hall syndrome,
Legius syndrome,
Holt–Oram syndrome,
Also, central polydactyly can be associated with syndactyly and cleft hand.
Other syndromes including polydactyly include acrocallosal syndrome, basal cell nevus syndrome, Biemond syndrome, ectrodactyly-ectodermal dysplasias-cleft lip/palate syndrome, mirror hand deformity, Mohr syndrome, oral-facial-digital syndrome, Rubinstein-Taybi syndrome, short rib polydactyly, and VATER association.
It can also occur with a triphalangeal thumb.
Dysmelia can be caused by
- inheritance of abnormal genes, e.g. polydactyly, ectrodactyly or brachydactyly, symptoms of deformed limbs then often occur in combination with other symptoms (syndromes)
- external causes during pregnancy (thus not inherited), e.g. via amniotic band syndrome
- teratogenic drugs (e.g. thalidomide, which causes phocomelia) or environmental chemicals
- ionizing radiation (nuclear weapons, radioiodine, radiation therapy)
- infections
- metabolic imbalance
Malformations of the upper extremities can occur In the third to seventh embryonic week. In some cases the TPT is hereditary. In these cases, there is a mutation on chromosome 7q36. If the TPT is hereditary, it is mostly inherited as an autosomal dominant trait, non-opposable and bilateral. The sporadic cases are mostly opposable and unilateral.
Ectrodactyly can be caused by various changes to 7q. When 7q is altered by a deletion or a translocation ectrodactyly can sometimes be associated with hearing loss. Ectrodactyly, or Split hand/split foot malformation (SHFM) type 1 is the only form of split hand/ malformation associated with sensorineural hearing loss.
Triphalangeal thumb can occur in syndromes but it can also be isolated. The triphalangeal thumb can appear in combination with other malformations or syndromes.
Syndromes include:
- Holt-Oram syndrome
- Aase syndrome
- Blackfan-Diamond syndrome
- Townes-Brocks syndrome
Malformations include:
- Radial polydactyly
- Syndactyly
- Claw-like hand or foot
The exact cause of the condition is unknown. In some cases, close family members may share this condition. In other cases, no other related persons have this condition. The scientific name for the condition is syndactyly, although this term covers both webbed fingers and webbed toes. Syndactyly occurs when apoptosis or programmed cell death during gestation is absent or incomplete. Webbed toes occur most commonly in the following circumstances:
- Syndactyly or Familial Syndactyly
- Down syndrome
It is also associated with a number of rare conditions, notably:
- Aarskog–Scott syndrome
- Acrocallosal syndrome
- Apert's syndrome
- Bardet-Biedl syndrome
- Carpenter syndrome
- Cornelia de Lange syndrome
- Edwards syndrome
- Jackson–Weiss syndrome
- Fetal hydantoin syndrome
- Miller syndrome
- Pfeiffer syndrome
- Smith-Lemli-Opitz syndrome
- Timothy syndrome
- Ectodermal Dysplasia
- Klippel-Feil Syndrome
A large number of human gene defects can cause ectrodactyly. The most common mode of inheritance is autosomal dominant with reduced penetrance, while autosomal recessive and X-linked forms occur more rarely. Ectrodactyly can also be caused by a duplication on 10q24. Detailed studies of a number of mouse models for ectrodactyly have also revealed that a failure to maintain median apical ectodermal ridge (AER) signalling can be the main pathogenic mechanism in triggering this abnormality.
A number of factors make the identification of the genetic defects underlying human ectrodactyly a complicated process: the limited number of families linked to each split hand/foot malformation (SHFM) locus, the large number of morphogens involved in limb development, the complex interactions between these morphogens, the involvement of modifier genes, and the presumed involvement of multiple gene or long-range regulatory elements in some cases of ectrodactyly. In the clinical setting these genetic characteristics can become problematic and making predictions of carrier status and severity of the disease impossible to predict.
In 2011, a novel mutation in DLX5 was found to be involved in SHFM.
Ectrodactyly is frequently seen with other congenital anomalies. Syndromes in which ectrodactyly is associated with other abnormalities can occur when two or more genes are affected by a chromosomal rearrangement. Disorders associated with ectrodactyly include Ectrodactyly-Ectodermal Dysplasia-Clefting (EEC) syndrome, which is closely correlated to the ADULT syndrome and Limb-mammary (LMS) syndrome, Ectrodactyly-Cleft Palate (ECP) syndrome, Ectrodactyly-Ectodermal Dysplasia-Macular Dystrophy syndrome, Ectrodactyly-Fibular Aplasia/Hypoplasia (EFA) syndrome, and Ectrodactyly-Polydactyly. More than 50 syndromes and associations involving ectrodactyly are distinguished in the London Dysmorphology Database.
The cause of frontorhiny is a mutation in the ALX3 gene. ALX3 is essential for normal facial development. Different mutations can occur in the ALX3 gene, but they all lead to the same effect: severe or complete loss of protein functionality. The ALX3 mutation never occurs in a person without frontorhiny.
Webbed toes in humans are a purely cosmetic condition. This condition does not impair the ability to perform any activity, including walking, running, or swimming. Depending on the severity and structure of the webbing, there can be some minor consequences.
People with more severe webbed toes may have a slight disadvantage for activities that benefit from prehensile toes, due to the toes being unable to split or move laterally. Although not scientifically proven, some believe that this condition can possibly allow for a slight advantage, specifically, in athletics. Considering your big toe is a main source for balance, having your second and third toe webbed could virtually be seen as having two big toes. Thus, allowing for better balance in athletics such as running or dance.
Psychological stress may arise from the fear of negative reactions to this condition from people who do not have webbed toes, particularly in severe cases where the nails are stuck visibly close together. Many people with webbed toes can physically feel the toes touching under the fused skin, which can cause psychological discomfort. This is due to the nerves of each toe fully developing and independent muscles working. In other cases where the toes are partially webbed, the webbing holds the separate tips of the toes against one another and prevents the muscles from spreading the toes apart, causing the toes and sometimes nails to press together.
However a disadvantage would be a difficulty in wearing flip-flops or other such footwear in warm countries. People with webbed toes may be unable to wear Toe socks or Vibram FiveFingers shoes. Difficulty navigating rough terrain barefoot, such as rocks at a beach is also common. In some cases the toes grow at different lengths causing the toes to buckle or bend and many people with severe webbed toes experience cramping in these toes due to the muscles and ligaments being strained.
The inheritance of Impossible syndrome is suspected to be autosomal recessive, which means the affected gene is located on an autosome, and two copies of the gene - one from each parent - are required to have an infant with the disorder.
SCS is the most common craniosynostosis syndrome and affects 1 in every 25,000 to 50,000 individuals. It occurs in all racial and ethnic groups, and affects males and females equally. If a parent carries a copy of the SCS gene mutation, then there is a 50% chance their child will also carry a copy of the gene mutation, in which case, the child may or may not show signs of SCS. There is also a 50% chance their child will have two working copies of the gene, and would therefore, not have SCS. If both parents carry a single copy of the SCS gene mutation, then there is a 25% chance their child will have two gene mutation copies (so child would develop severe SCS), a 25% chance their child would have two normal copies of the gene (so would be completely normal), and a 50% chance their child would carry one gene mutation copy and 1 normal copy (so child may or may not display SCS). In rare situations, two normal parents can have a child with SCS due to a "de novo" mutation. The exact cause of the "de novo" mutation is unknown, but it doesn't seem to be related to anything that the parents did or didn't do during the pregnancy. SCS due to a "de novo" mutation is so rare that the proportion of past cases is unknown.
Although many perinatal and prenatal risk factors for ONH have been suggested, the predominant, enduring, most frequent risk factors are young maternal age and primiparity (the affected child being the first child born to the mother). Increased frequency of delivery by caesarean section and fetal/neonatal complications, preterm labor, gestational vaginal bleeding, low maternal weight gain, and weight loss during pregnancy are also associated with ONH.
Carpenter syndrome has been associated with mutations in the RAB23 gene, which is located on chromosome 6 in humans. Additionally, three key SNPs in the MEGF8 gene, located on chromosome 19 at 19q13.2, have been identified as primary causes of Carpenter syndrome.
According to the National Human Genome Research Institute, Poland syndrome affects males three times as often as females and affects the right side of the body twice as often as the left. The incidence is estimated to range from one in 7,000 to one in 100,000 live births.
The cause of fibular hemimelia is unclear. Purportedly, there have been some incidents of genetic distribution in a family; however, this does not account for all cases. Maternal viral infections, embryonic trauma, teratogenic environmental exposures or vascular dysgenesis (failure of the embryo to form a satisfactory blood supply) between four and seven weeks gestation are considered possible causes.
In an experimental mouse model, change in the expression of a homeobox gene led to similar, but bilateral, fibular defects.
Five types of syndactyly have been identified in humans. The corresponding loci associated with these types and their common phenotypical expression are as follows:
- "type I": 2q34-q36; webbing occurs between middle and ring fingers and/or second and third toes.
- "type II": 2q31; also involves long and ring fingers, but has a sixth finger merged in between.
- "type III": 6q21-q23; small finger is merged into the ring finger.
- "type IV": 7q36; involves all fingers and/or toes.
- "type V": 2q31-q32; similar to type I, but the metacarpals and metatarsals may also be fused.
The most common problem with syndactyly correction is creeping of the skin towards the fingertip over time. This is likely due to tension at the site of the repair between the digits. Additional surgery may be required to correct this. One critique of using skin grafts is that the grafts darken in the years after surgery and become more noticeable. Also, if the skin grafts are harvested from the groin area, the skin may grow hair. Finally, the fingers may deviate after surgery. This is most commonly seen in complex syndactyly (when there has been a bony joining of the fingers).
There are three different theories to the cause of the constriction ring syndrome.
The first is the intrinsic theory, which was proposed by Streeter in 1930, implicates an anomaly in germ plasm resulting in the defects. This theory is reinforced by the clinical presentation of the constriction rings with other internal visceral and systematic anomalies. Because of these other anomalies the names “Constriction Ring Syndrome”, “Constriction Band Syndrome” and “Streeter Bands” are given to this defect/disease.
The second theory postulates the involvement of an intrauterine disruption during pregnancy followed by a cascade of events involving amniotic rupture. When spontaneous rupture of the amnion occurs early in the second trimester, the separation of amnion from chorion produces many small, thin strands that can become entangled within digits and toes.
The names “Amniotic Band Syndrome”, “Amniotic Disruption Complex", "Amniochorionic Mesoblastic Fibrous Strings", are based on this theory.
The third theory postulates the involvement of intrauterine trauma. Intrauterine trauma could be something like amniocentesis, or something like an fetal surgery. An intrauterine trauma could result in hemorrhage leading to acrosyndactyly. One study also showed the presence of bands as confirmed by sonography after fetal surgery.
Because of these different theories, there are many names for this syndrome. For a long time people believed the second theory about the amniotic rupture and strands. In the research cases not every child had a real (amniotic) strand. It could be that there has to be another explanation for the development of these anomalies.
Three main support groups of this syndrome are the ASGA in Australia, The Association for Children with Genetic Disorders in Poland, and the Association of People of Genetic Disorders in Greece.
Prenatal diagnosis of Saethre-Chotzen Syndrome in high risk pregnancies is doable, but very uncommon and rarely performed. Furthermore, this is only possible if the mutation causing the disease has already been identified within the family genome. There are a few different techniques in which prenatal testing can be carried out. Prenatal testing is usually performed around 15–18 weeks, using amniocentesis to extract DNA from the fetus's cells. Prenatal testing can also be performed during weeks 10-12 using chorionic villus sampling (CVS) to extract DNA from the fetus. Recently, there has been an increased interest in utilizing ultrasound equipment in order to detect fetal skull abnormalities due to immature fusion of the cranial sutures.
Synpolydactyly is a joint presentation of syndactyly (fusion of digits) and polydactyly (production of supernumerary digits). This is often a result of a mutation in the HOX D13 gene.
Types include: