Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Mammals can get parasites from contaminated food or water, bug bites, or sexual contact. Ingestion of contaminated water can produce Giardia infections.
Parasites normally enter the body through the skin or mouth. Close contact with pets can lead to parasite infestation as dogs and cats are host to many parasites.
Other risks that can lead people to acquire parasites are walking barefeet, inadequate disposal of feces, lack of hygiene, close contact with someone carrying specific parasites, and eating undercooked foods, unwashed fruits and vegetables or foods from contaminated regions.
Parasites can also be transferred to their host by the bite of an insect vector, i.e. mosquito, bed bug, fleas.
Areas with the highest prevalence of helminthiasis are tropical and subtropical areas including sub-Saharan Africa, central and east Asia, and the Americas.
Some types of helminthiases are classified as neglected tropical diseases. They include:
- Soil-transmitted helminthiases
- Roundworm infections such as lymphatic filariasis, dracunculiasis, and onchocerciasis
- Trematode infections, such as schistosomiasis, and food-borne trematodiases, including fascioliasis, clonorchiasis, opisthorchiasis, and paragonimiasis
- Tapeworm infections such as cysticercosis, taeniasis, and echinococcosis
Helminths are extremely successful parasites capable of establishing long-lasting infections within a host. During this time, helminths compete with the host organism's cells for nutrient resources and thus possess the potential to cause harm. However, the number of organisms hosted by individuals undergoing helminthic therapy is very small and any side effects are typically only encountered in the first three months of infection. In the long term, the vast majority of clinically infected individuals are asymptomatic, with no significant nutrient loss. In fact, nutrient uptake can be enhanced in some subjects who are hosting a small number of helminths. If the side effects from helminthic therapy were to become unmanageable, they can be alleviated by the use of anthelminthic medications.[1][7][8] The most common clinical symptoms which may be encountered while undergoing helminthic therapy can include:
- Fatigue
- Gastrointestinal discomfort
- Anemia
- Fever
- Abdominal pain
- Weight loss
- Anorexia
- Diarrhea
- General malaise
While it is recognized that there is probably a genetic disposition in certain individuals for the development of autoimmune diseases, the rate of increase in incidence of autoimmune diseases is not a result of genetic changes in humans; the increased rate of autoimmune-related diseases in the industrialized world is occurring in too short a time to be explained in this way. There is evidence that one of the primary reasons for the increase in autoimmune diseases in industrialized nations is the significant change in environmental factors over the last century. Environmental factors include exposure to certain artificial chemicals from industrial processes, medicines, farming, and food preparation. It is posited that the absence of exposure to certain parasites, bacteria, and viruses is playing a significant role in the development of autoimmune diseases in the more sanitized and industrialized Western nations.
Lack of exposure to naturally occurring pathogens and parasites may result in an increased incidence of autoimmune diseases. Correlational data has shown the prevalence of helminthic infections to be greatest south of the equator where the rates of autoimmune diseases such as multiple sclerosis are low.
This is consistent with the hygiene hypothesis which suggests that helminthic infections protect individuals from developing auto-immune diseases rather than being an agent responsible for inducing them. A complete explanation of how environmental factors play a role in autoimmune diseases has still not been proposed. Epidemiological studies such as the meta-analysis by Leonardi-Bee et al., however, have helped to establish the link between parasitic infestation and their protective role in autoimmune disease development.
Genetic research on the interleukin genes (IL genes) shows that helminths have been a major selective force on a subset of these human genes. In other words, helminths have shaped the evolution of at least parts of the human immune system, especially the genes responsible for Crohn's disease, ulcerative colitis, and celiac disease; and provides further evidence that it is the absence of parasites, and in particular helminths, that has likely caused a substantial portion of the increase in incidence of diseases of immune dysregulation and inflammation in industrialized countries in the last century. A systematic approach was used to determine the relative pressure pathogens, such as helminths, viruses or bacteria exerted upon a selection of interleukin genes. Fumagalli et al. (2009) examined 52 globally dispersed human populations along with the diverse levels of pathogen richness, for >650,00 SNPs within 91 IL or IL receptor genes. Helminths were identified as a major selective pressure on a subset of IL genes. Through additional genome-wide association studies the subset of IL genes were associated with the human susceptibility to IBS and coeliac disease.
Since its first description in the 1960s, only seven people worldwide have been reported to have survived PAM as of 2015, with three in the United States and one in Mexico; one of the US survivors had brain damage that is probably permanent. Less than 1% of people with naegleriasis survive.
The disease is rare and highly lethal: there have only been 300 cases as of 2008. Drug treatment research at Aga Khan University in Pakistan has shown that "in-vitro" drug susceptibility tests with some FDA approved drugs used for non-infectious diseases have proved to kill "Naegleria" "fowleri" with an amoebicidal rate greater than 95%. The same source has also proposed a device for drug delivery via the transcranial route to the brain.
The number of cases of infection could increase due to climate change, and was posited as the reason for 3 cases in Minnesota in 2010, 2012, and 2015. In 2016, an infection was contracted in Maryland, four miles south of the Pennsylvania border;
As of 2013, numbers of reported cases were expected to increase, simply because of better informed diagnoses being made both in ongoing cases and in autopsy findings.
One strategy for the prevention of infection transmission between cats and people is to better educate people on the behaviour that puts them at risk for becoming infected.
Those at the highest risk of contracting a disease from a cat are those with behaviors that include: being licked, sharing food, sharing kithchen utensils, kissing, and sleeping with a cat. The very young, the elderly and those who are immunocompromised increase their risk of becoming infected when sleeping with their cats (and dogs). The CDC recommends that cat owners not allow a cat to lick your face because it can result in disease transmission. If someone is licked on their face, mucous membranes or an open wound, the risk for infection is reduced if the area is immediately washed with soap and water. Maintaining the health of the animal by regular inspection for fleas and ticks, scheduling deworming medications along with veterinary exams will also reduce the risk of acquiring a feline zoonosis.
Recommendations for the prevention of ringworm transmission to people include:
- regularly vacuuming areas of the home that pets commonly visit helps to remove fur or flakes of skin
- washing the hands with soap and running water after playing with or petting your pet.
- wearing gloves and long sleeves when handling cats infected with.
- disinfect areas the pet has spent time in, including surfaces and bedding.
- the spores of this fungus can be killed with common disinfectants like chlorine bleach diluted 1:10 (1/4 cup in 1 gallon of water), benzalkonium chloride, or strong detergents.
- not handling cats with ringworm by those whose immune system is weak in any way (if you have HIV/AIDS, are undergoing cancer treatment, or are taking medications that suppress the immune system, for example).
- taking the cat to the veterinarian if ringworm infection is suspected.
A parasitic disease, also known as parasitosis, is an infectious disease caused or transmitted by a parasite. Many parasites do not cause diseases. Parasitic diseases can affect practically all living organisms, including plants and mammals. The study of parasitic diseases is called parasitology.
Some parasites like "Toxoplasma gondii" and "Plasmodium" spp. can cause disease directly, but other organisms can cause disease by the toxins that they produce.
Cryptosporidiosis is a parasitic disease that is transmitted through contaminated food or water from an infected person or animal. Cryptosporidiosis in cats is rare, but they can carry the protozoan without showing any signs of illness. Cryptosporidiosis can cause profuse, watery diarrhea with cramping, abdominal pain, and nausea in people. Illness in people is usually self-limiting and lasts only 2–4 days, but can become severe in people with weakened immune systems. Cryptosporidiosis (Cryptosporidium spp.) Cats transmit the protozoan through their feces. The symptoms in people weight loss and chronic diarrhea in high-risk patients. More than one species of this genus can be acquired by people. Dogs can also transmit this parasite.
The total global infection is estimated to be between 40 and 60 million people. In the US, the incidence of infection is low, but 25% of cattle sold are still infected.
Humans are accidental hosts of "Toxocara", yet toxocariasis is seen throughout the world. Most cases of toxocariasis are seen in people under the age of twenty. Seroprevalence is higher in developing countries, but can be considerable in first world countries, as well. In Bali, St. Lucia, Nepal and other countries, seroprevalence is over fifty percent. Previous to 2007, the U.S. seroprevalence was thought to be around 5% in children. However, Won et al. discovered that U.S. seroprevalence is actually 14% for the population at large. In many countries, toxocariasis is considered very rare. Approximately 10,000 clinical cases are seen a year in the U.S., with ten percent being OLM. Permanent vision loss occurs in 700 of these cases.
Young children are at the greatest risk of infection because they play outside and tend to place contaminated objects and dirt in their mouths. Dog ownership is another known risk factor for transmission. There is also a significant correlation between high "Toxocara" antibody titers and epilepsy in children.
Parasitic loads as high as 300 larvae in a single gram of liver have been noted in humans. The “excretory-secretory antigens of larvae… released from their outer epicuticle coat [and]… readily sloughed off when bound by specific antibodies” incite the host’s immune response. The tipping point between development of VLM and OLM is believed to be between 100 and 200 larvae. The lighter infection in OLM is believed to stimulate a lower immune response and allow for migration of a larva into the eye. Larvae are thought to enter the eye through the optic nerve, central retinal artery, short posterior ciliary arteries, soft tissues, or cerebrospinal fluid. Ocular granulomas that form around a larva typically are peripheral in the retina or optic disc.
Visceral larva migrans seems to affect children aged 1–4 more often while ocular larva migrans more frequently affects children aged 7–8. Between 4.6% and 23% of U.S. children have been infected with the dog roundworm egg. This number is much higher in other parts of the world, such as Colombia, where up to 81% of children have been infected.
Some species of cattle such as the African buffalo, N'dama, and Keteku appear trypanotolerant and do not develop symptoms. Calves are more resistant than adults.
Strongyloidiasis is a human parasitic disease caused by the nematode called "Strongyloides stercoralis", or sometimes "S. fülleborni" which is a type of helminth. It belongs to a group of nematodes called roundworms. This intestinal worm can cause a number of symptoms in people, principally skin symptoms, abdominal pain, diarrhea and weight loss. In some people, particularly those who require corticosteroids or other immunosuppressive medication, "Strongyloides" can cause a hyperinfection syndrome that can lead to death if untreated. The diagnosis is made by blood and stool tests. The medication ivermectin is widely used to treat strongyloidiasis.
Strongyloidiasis is a type of soil-transmitted helminthiasis. It is thought to affect 30–100 million people worldwide, mainly in tropical and subtropical countries. It belongs to the group of neglected tropical diseases, and worldwide efforts are aimed at eradicating the infection.
Estimates regarding the number of deaths vary. Worldwide, the Global Burden of Disease Study issued in 2010 estimated 12,000 direct deaths while the WHO in 2014 estimated more than 200,000 annual deaths related to schistosomiasis. Another 20 million have severe consequences from the disease. It is the most deadly of the neglected tropical diseases.
The fundamental prevention strategy is hygiene and sanitation. Secondary measures include stricter meat-inspection standards, livestock confinement, health education, safe meat preparation, mass drug therapy, and identifying and treating human and pig carriers. Moreover, a high level of sanitation and prevention of human faecal contamination of pig feeds also plays a major role in prevention. Infection can be prevented with proper disposal of human faeces around pigs, cooking meat thoroughly and/or freezing the meat at −10 °C for 5 days. For human cysticercosis, dirty hands are attributed to be the primary cause, and especially common among food handlers.
Proper cooking of meat is an effective prevention. For example, cooking (56 °C for 5 minutes) of beef viscera destroys cysticerci. Refrigeration, freezing (−10 °C for 9 days) or long periods of salting is also lethal to cysticerci. Inspection of beef and proper disposal of human excreta are also important measures.
Chagas disease affects 8 to 10 million people living in endemic Latin American countries, with an additional 300,000–400,000 living in nonendemic countries, including Spain and the United States. An estimated 41,200 new cases occur annually in endemic countries, and 14,400 infants are born with congenital Chagas disease annually. in 2010 it resulted in approximately 10,300 deaths up from 9,300 in 1990.
The disease is present in 18 countries on the American continents, ranging from the southern United States to northern Argentina. Chagas exists in two different ecological zones. In the Southern Cone region, the main vector lives in and around human homes. In Central America and Mexico, the main vector species lives both inside dwellings and in uninhabited areas. In both zones, Chagas occurs almost exclusively in rural areas, where triatomines breed and feed on the more than 150 species from 24 families of domestic and wild mammals, as well as humans, that are the natural reservoirs of "T. cruzi".
Although Triatominae bugs feed on them, birds appear to be immune to infection and therefore are not considered to be a "T. cruzi" reservoir. Even when colonies of insects are eradicated from a house and surrounding domestic animal shelters, they can re-emerge from plants or animals that are part of the ancient, sylvatic (referring to wild animals) infection cycle. This is especially likely in zones with mixed open savannah, with clumps of trees interspersed by human habitation.
The primary wildlife reservoirs for "Trypanosoma cruzi" in the United States include opossums, raccoons, armadillos, squirrels, woodrats, and mice. Opossums are particularly important as reservoirs, because the parasite can complete its life cycle in the anal glands of this animal without having to re-enter the insect vector. Recorded prevalence of the disease in opossums in the U.S. ranges from 8.3% to 37.5%.
Studies on raccoons in the Southeast have yielded infection rates ranging from 47% to as low as 15.5%. Armadillo prevalence studies have been described in Louisiana, and range from a low of 1.1% to 28.8%. Additionally, small rodents, including squirrels, mice, and rats, are important in the sylvatic transmission cycle because of their importance as bloodmeal sources for the insect vectors. A Texas study revealed 17.3% percent "T. cruzi" prevalence in 75 specimens representing four separate small rodent species.
Chronic Chagas disease remains a major health problem in many Latin American countries, despite the effectiveness of hygienic and preventive measures, such as eliminating the transmitting insects. However, several landmarks have been achieved in the fight against it in Latin America, including a reduction by 72% of the incidence of human infection in children and young adults in the countries of the Southern Cone Initiative, and at least three countries (Uruguay, in 1997, and Chile, in 1999, and Brazil in 2006) have been certified free of vectorial and transfusional transmission. In Argentina, vectorial transmission has been interrupted in 13 of the 19 endemic provinces, and major progress toward this goal has also been made in both Paraguay and Bolivia.
Screening of donated blood, blood components, and solid organ donors, as well as donors of cells, tissues, and cell and tissue products for "T. cruzi" is mandated in all Chagas-endemic countries and has been implemented. Approximately 300,000 infected people live in the United States, which is likely the result of immigration from Latin American countries, and there have been 23 cases acquired from kissing bugs in the United States reported between 1955 and 2014. With increased population movements, the possibility of transmission by blood transfusion became more substantial in the United States. Transfusion blood and tissue products are now actively screened in the U.S., thus addressing and minimizing this risk.
Disseminated strongyloidiasis occurs when patients with chronic strongyloidiasis become immunosuppressed. It presents with abdominal pain, distension, shock, pulmonary and neurologic complications and septicemia, and is potentially fatal. The worms enter the bloodstream from the bowel wall, simultaneously allowing entry of bowel bacteria such as "Escherichia coli". This may cause symptoms such as sepsis (bloodstream infection), and the bacteria may spread to other organs where they may cause localized infection such as meningitis.
Dissemination can occur many decades after the initial infection and has been associated with high dose corticosteroids, organ transplant, HIV, lepromatous leprosy, tertiary syphilis, aplastic anemia, malnutrition, advanced tuberculosis and radiation poisoning. It is often recommended that patients being started on immunosuppression be screened for chronic strongyloidiasis; however, this is often impractical (screen tests are often unavailable) and in developed countries, the prevalence of chronic strongyloidiasis is very small, so screening is usually not cost-effective, except in endemic areas.
It is important to note that there is not necessarily any eosinophilia in the disseminated disease. Absence of eosinophilia may indicate poor prognosis.
There is currently no vaccine against Chagas disease. Prevention is generally focused on decreasing the numbers of the insect that spreads it ("Triatoma") and decreasing their contact with humans. This is done by using sprays and paints containing insecticides (synthetic pyrethroids), and improving housing and sanitary conditions in rural areas. For urban dwellers, spending vacations and camping out in the wilderness or sleeping at hostels or mud houses in endemic areas can be dangerous; a mosquito net is recommended. Some measures of vector control include:
- A yeast trap can be used for monitoring infestations of certain species of triatomine bugs ("Triatoma sordida", "Triatoma brasiliensis", "Triatoma pseudomaculata", and "Panstrongylus megistus").
- Promising results were gained with the treatment of vector habitats with the fungus "Beauveria bassiana".
- Targeting the symbionts of Triatominae through paratransgenesis can be done.
A number of potential vaccines are currently being tested. Vaccination with "Trypanosoma rangeli" has produced positive results in animal models. More recently, the potential of DNA vaccines for immunotherapy of acute and chronic Chagas disease is being tested by several research groups.
Blood transfusion was formerly the second-most common mode of transmission for Chagas disease, but the development and implementation of blood bank screening tests has dramatically reduced this risk in the 21st century. Blood donations in all endemic Latin American countries undergo Chagas screening, and testing is expanding in countries, such as France, Spain and the United States, that have significant or growing populations of immigrants from endemic areas. In Spain, donors are evaluated with a questionnaire to identify individuals at risk of Chagas exposure for screening tests.
The US FDA has approved two Chagas tests, including one approved in April 2010, and has published guidelines that recommend testing of all donated blood and tissue products. While these tests are not required in US, an estimated 75–90% of the blood supply is currently tested for Chagas, including all units collected by the American Red Cross, which accounts for 40% of the U.S. blood supply. The Chagas Biovigilance Network reports current incidents of Chagas-positive blood products in the United States, as reported by labs using the screening test approved by the FDA in 2007.
Actively involving veterinarians and pet owners is important for controlling the transmission of "Toxocara" from pets to humans. A group very actively involved in promoting a reduction of infections in dogs in the United States is the Companion Animal Parasite Council -- CAPC. Since pregnant or lactating dogs and cats and their offspring have the highest, active parasitic load, these animals should be placed on a deworming program. Pet feces should be picked up and disposed of or buried, as they may contain "Toxocara" eggs. Practicing this measure in public areas, such as parks and beaches, is especially essential for decreasing transmission. Up to 20% of soil samples of U.S. playgrounds have found roundworm eggs. Also, sandboxes should be covered when not in use to prevent cats from using them as litter boxes. Hand washing before eating and after playing with pets, as well as after handling dirt will reduce the chances of ingesting "Toxocara" eggs. Washing all fruits and vegetables, keeping pets out of gardens and thoroughly cooking meats can also prevent transmission. Finally, teaching children not to place nonfood items, especially dirt, in their mouths will drastically reduce the chances of infection.
Toxocariasis has been named one of the neglected diseases of U.S. poverty, because of its prevalence in Appalachia, the southern U.S., inner city settings, and minority populations. Unfortunately, there is currently no vaccine available or under development. However, the mitochondrial genomes of both "T. cati" and "T. canis" have recently been sequenced, which could lead to breakthroughs in treatment and prevention.
Prevention focuses on protecting against mosquito bites in endemic regions. Insect repellents and mosquito nets are useful to protect against mosquito bites. Public education efforts must also be made within the endemic areas of the world to successfully lower the prevalence of "W. bancrofti" infections.
Central nervous system lesions occur occasionally. Cerebral granulomatous disease may be caused by "S. japonicum" eggs in the brain. Communities in China affected by "S. japonicum" have been found to have rates of seizures eight times higher than baseline. Similarly, granulomatous lesions from "S. mansoni" and "S. haematobium" eggs in the spinal cord can lead to transverse myelitis with flaccid paraplegia. Eggs are thought to travel to the central nervous system via embolization.
Parasitic pneumonia is an infection of the lungs by parasites. It is a rare cause of pneumonia, occurring almost exclusively in immunocompromised persons (persons with a weakened or absent immune system). This is a respiratory infection that may or may not be serious.
There are a variety of parasites which can affect the lungs. In general, these parasites enter the body through the skin or by being swallowed. Once inside the body, these parasites travel to the lungs, most often through the blood. There, a similar combination of cellular destruction and immune response causes disruption of oxygen transportation. Depending on the type of parasite, antihelmynthic drugs can be prescribed.
The most common parasites involved:
- Ascariasis
- Schistosoma
- Toxoplasma gondii
The definitive hosts for these "Taenia" species are canids. The adult tapeworms live in the intestines of animals like dogs, foxes, and coyotes. Intermediate hosts such as rabbits, goats, sheep, horses, cattle and sometimes humans get the disease by inadvertently ingesting tapeworm eggs (gravid proglottids) that have been passed in the feces of an infected canid. This can happen from ingesting food, water or soil that has been contaminated by dog feces. The disease cannot be transmitted from one intermediate host to another, but it is still not a good idea to eat meat that presents with cystic nodules from coenurosis.
Public education about the dangers of consuming raw and undercooked meat, especially pork, may reduce infection rates. Hunters are also an at-risk population due to their contact and consumption of wild game, including bear. As such, many states, such as New York, require the completion of a course in such matters before a hunting license can be obtained.